棱長為1的正方體ABCD-A1B1C1D1中,P,M分別為線段BD1,B1C1上的點,若BP=2PD1,則三棱錐M-PBC的體積.
考點:棱柱、棱錐、棱臺的體積
專題:空間位置關(guān)系與距離
分析:利用直線與平面平行,轉(zhuǎn)化所求幾何體的體積為同底面高相等的棱錐的體積,即可求出三棱錐M-PBC的體積.
解答: 解:∵棱長為3的正方體ABCD-A1B1C1D1中,
P、M分別為線段BD1,B1C1上的點,BP=2PD1,因為幾何體是正方體,所以B1M∥BC,
∴M到面PBC的距離與B1到面PBC的距離相等,三棱錐M-PBC的體積
轉(zhuǎn)化為:三棱錐P-B1BC的體積,正方體的棱長為1,
BP=2PD1,P到平面B1BC的距離為:
2
3
,
∴VM-PBC=VP-BB1C=
1
3
×
1
2
×1×1×
2
3
=
1
9
點評:本題考查三棱錐的體積的求法,解題時要認真審題,仔細解答,注意合理地化空間問題為平面問題,考查轉(zhuǎn)化思想的應(yīng)用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-(m+2)x-m+1有兩個零點,則m的取值范圍是
 
(用區(qū)間表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若θ∈(
π
2
,π),
a
=(1,sinθ),
b
=(3sinθ,1),且
a
b
,則cos(θ+
π
6
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于實數(shù)m,n定義運算“⊕”:m⊕n=
-m2+2mn-1,m≤n
n2-mn,m>n
,設(shè)f(x)=(2x-1)⊕(x-1),且關(guān)于x的方程f(x)=a恰有三個互不相等的實數(shù)根x1,x2,x3,則x1x2x3的取值范圍是(  )
A、(-
1
32
,0)
B、(-
1
16
,0)
C、(0,
1
32
D、(0,
1
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+3ax2+3bx+c在x=2處有極值,其圖象在x=1處的切線與直線6x+2y+5=0平行.
(Ⅰ)求a,b的值和函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當x∈[1,3]時,f(x)>1-4c2恒成立,求實數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,PA、PB分別切⊙O于點 A、B,點C在⊙O的劣弧AB上,且∠ACB=130°,則∠P=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,a1=1,a2=3,數(shù)列{
1
anan+1
}的前n項和為
15
31
,則n的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(2wx-
π
6
)-4sin2wx+2(w>0),其圖象與x軸相鄰兩個交點的距離為
π
2

(1)求函數(shù)f(x)的解析式;
(2)若將f(x)的圖象向左平移m(m>0)個長度單位得到函數(shù)g(x)的圖象恰好經(jīng)過點(-
π
3
,0),求當m取得最小值時,g(x)在[-
π
6
,
12
]上的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若P是長度為6的線段AB上任意一點,則點P到線段AB兩端距離均不小于1的概率( 。
A、
5
6
B、
2
3
C、
1
2
D、
1
3

查看答案和解析>>

同步練習冊答案