【題目】已知函數(shù).
(1)若函數(shù)的定義域為,求的取值范圍;
(2)設(shè)函數(shù),若對任意,總有,求的取值范圍.
【答案】(1);(2)
【解析】試題分析 :(1)函數(shù)的定義域為,即在上恒成立,分和討論即可.
(2)由題對任意,總有,等價于在上恒成立,設(shè),則, (當且僅當時取等號).分當時和當時討論可得的取值范圍是.
試題解析:(1)函數(shù)的定義域為,即在上恒成立,
當時, 恒成立,符合題意;
當時,必有
綜上, 的取值范圍是.
(2)∵
∴
對任意,總有,
等價于在上恒成立,
在上恒成立,(*)
設(shè),則, (當且僅當時取等號).
(*)在上恒成立,(**)
當時,(**)顯然成立,
當時, 在上恒成立,
令, ,只需.
∵ 在區(qū)間上單調(diào)遞增,
∴
令, ,只需
而, 且,∴,故.
綜上, 的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P﹣ABCD中,PA⊥底面ABCD,底面ABCD是一直角梯形,∠BAD=90°,AD∥BC,AB=BC=a,PA= a,AD=2a.
(1)若AE⊥PD,E為垂足,求異面直線AE與CD所成角的余弦值;
(2)求平面PAB與平面PCD所成的銳二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體ABCD-A1B1C1D1中,E,F,P,Q,M,N分別是棱AB,AD,DD1,BB1,A1B1,A1D1的中點.求證:
(1)直線BC1∥平面EFPQ.
(2)直線AC1⊥平面PQMN.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: 的右焦點為F(1,0),且點(﹣1, )在橢圓C上.
(1)求橢圓C的標準方程;
(2)已知動直線l過點F,且與橢圓C交于A,B兩點,試問x軸上是否存在定點Q,使得 恒成立?若存在,求出點Q的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家庭進行理財投資,根據(jù)長期收益率市場預(yù)測,投資類產(chǎn)品的收益與投資額成正比,投資類產(chǎn)品的收益與投資額的算術(shù)平方根成正比.已知投資1萬元時兩類產(chǎn)品的收益分別為0.125萬元和0.5萬元.
(1)分別寫出兩類產(chǎn)品的收益與投資額的函數(shù)關(guān)系;
(2)該家庭有20萬元資金,全部用于理財投資,問:怎么分配資金能使投資獲得最大收益,其最大收益是多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx+ ,(a>0)
(1)當a=2時,求函數(shù)f(x)在x=1處的切線方程;
(2)若函數(shù)f(x)在區(qū)間[1,+∞)上單調(diào)遞增,求a的取值范圍;
(3)求函數(shù)f(x)在區(qū)間[1,2]的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)試比較與的大小關(guān)系,并給出證明;
(2)解方程: ;
(3)求函數(shù), (是實數(shù))的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】衡州市臨棗中學(xué)高二某小組隨機調(diào)查芙蓉社區(qū)160個人,以研究這一社區(qū)居民在20:00﹣22:00時間段的休閑方式與性別的關(guān)系,得到下面的數(shù)據(jù)表:
休閑方式 | 看電視 | 看書 | 合計 |
男 | 20 | 100 | 120 |
女 | 20 | 20 | 40 |
合計 | 40 | 120 | 160 |
下面臨界值表:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(Ⅰ)將此樣本的頻率估計為總體的概率,隨機調(diào)查3名在該社區(qū)的男性,設(shè)調(diào)查的3人在這一時間段以看書為休閑方式的人數(shù)為隨機變量X,求X的分別列和期望;
(Ⅱ)根據(jù)以上數(shù)據(jù),能否有99%的把握認為“在20:00﹣22:00時間段的休閑方式與性別有關(guān)系”?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某化工廠擬建一個下部為圓柱,上部為半球的容器(如圖,圓柱高為h,半徑為r,不計厚度,單位:米),按計劃容積為72π立方米,且h≥2r,假設(shè)其建造費用僅與表面積有關(guān)(圓柱底部不計),已知圓柱部分每平方米的費用為2千元,半球部分每平方米4千元,設(shè)該容器的建造費用為y千元.
(Ⅰ)求y關(guān)于r的函數(shù)關(guān)系,并求其定義域;
(Ⅱ)求建造費用最小時的r.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com