【題目】已知橢圓的離心率,一個(gè)長軸頂點(diǎn)在直線上,若直線與橢圓交于,兩點(diǎn),為坐標(biāo)原點(diǎn),直線的斜率為,直線的斜率為.
(1)求該橢圓的方程.
(2)若,試問的面積是否為定值?若是,求出這個(gè)定值;若不是,請說明理由.
【答案】(1);(2)的面積為定值1.
【解析】
(1)根據(jù)離心率及長軸即可寫出橢圓標(biāo)準(zhǔn)方程(2)設(shè),,當(dāng)直線的斜率存在時(shí),設(shè)其方程為,求,點(diǎn)到直線的距離,寫出三角形面積,化簡即可求證.
由,又由于,一個(gè)長軸頂點(diǎn)在直線上,
可得:,,.
(1)故此橢圓的方程為.
(2)設(shè),,當(dāng)直線的斜率存在時(shí),設(shè)其方程為,
聯(lián)立橢圓的方程得:,
由,可得,
則,,
,
又點(diǎn)到直線的距離,
,
由于,
可得:,
故,
當(dāng)直線的斜率不存在時(shí),可算得:,
故的面積為定值1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 設(shè)命題p:函數(shù)y=在定義域上為減函數(shù);命題q:a,b∈(0,+∞),當(dāng)a+b=1時(shí),+=3.以下說法正確的是( )
A. p∨q為真B. p∧q為真
C. p真q假D. p,q均假
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列五個(gè)命題:
①直線平行于平面內(nèi)的一條直線,則;
②若是銳角三角形,則;
③已知是等差數(shù)列的前項(xiàng)和,若,則;
④當(dāng)時(shí),不等式恒成立,則實(shí)數(shù)的取值范圍為.
其中正確命題的序號為___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率為,直線與橢圓C交于A,B兩點(diǎn),且.
(1)求橢圓C的方程.
(2)不經(jīng)過點(diǎn)的直線被圓截得的弦長與橢圓C的長軸長相等,且直線與橢圓C交于D,E兩點(diǎn),試判斷的周長是否為定值?若是,求出定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】昆明市某中學(xué)的環(huán)保社團(tuán)參照國家環(huán)境標(biāo)準(zhǔn)制定了該校所在區(qū)域空氣質(zhì)量指數(shù)與空氣質(zhì)量等級對應(yīng)關(guān)系如下表(假設(shè)該區(qū)域空氣質(zhì)量指數(shù)不會(huì)超過300),該社團(tuán)將該校區(qū)在2018年100天的空氣質(zhì)量指數(shù)監(jiān)測數(shù)據(jù)作為樣本,繪制的頻率分布直方圖如圖4,把該直方圖所得頻率估計(jì)為概率.
空氣質(zhì)量指數(shù) | ||||||
空氣質(zhì)量等級 | 1級優(yōu) | 2級良 | 3級輕度污染 | 4度中度污染 | 5度重度污染 | 6級嚴(yán)重污染 |
(1)請估算2019年(以365天計(jì)算)全年空氣質(zhì)量優(yōu)良的天數(shù)(未滿一天按一天計(jì)算);
(2)用分層抽樣的方法共抽取10天,則空氣質(zhì)量指數(shù)在,,的天數(shù)中各應(yīng)抽取幾天?
(3)已知空氣質(zhì)量等級為1級時(shí)不需要凈化空氣,空氣質(zhì)量等級為2級時(shí)每天需凈化空氣的費(fèi)用為2000元,空氣質(zhì)量等級為3級時(shí)每天需凈化空氣的費(fèi)用為4000元若在(2)的條件下,從空氣質(zhì)量指數(shù)在的天數(shù)中任意抽取兩天,求這兩天的凈化空氣總費(fèi)用的分布列
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為兩個(gè)平面,則的充要條件是( )
A. 內(nèi)有無數(shù)條直線與β平行B. 垂直于同一平面
C. ,平行于同一條直線D. 內(nèi)有兩條相交直線與平行
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,.
當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間,并求出其極值;
若函數(shù)存在兩個(gè)零點(diǎn),求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)(1,2)是函數(shù)的圖象上一點(diǎn),數(shù)列的前項(xiàng)和是.
(1)求數(shù)列的通項(xiàng)公式;
(2)若,求數(shù)列的前n項(xiàng)和
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com