曲線在區(qū)間上截直線所得的弦長相等且不為0,則下列描述中正確的是                                   (   )
A.B.C.D.
A
∵在區(qū)間上截直線所得的弦長相等且不為0,∴
有交點,
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,給出定點A(a,0)  (a>0,a≠1)和直線lx=-1,B是直線l上的動點,∠BOA的角平分線交AB于點C,求點C的軌跡方程,并討論方程表示的曲線類型與a值的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)是橢圓上不關(guān)于坐標軸對稱的兩個點,直線軸于點(與點不重合),O為坐標原點.
(1)如果點是橢圓的右焦點,線段的中點在y軸上,求直線AB的方程;
(2)設(shè)軸上一點,且,直線與橢圓的另外一個交點為C,證明:點與點關(guān)于軸對稱.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在極坐標系中,,求直線的極坐標方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


將圓上的點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130736172272.gif" style="vertical-align:middle;" />倍,得到曲線.設(shè)直線與曲線相交于、兩點,且,其中是曲線軸正半軸的交點.
(Ⅰ)求曲線的方程;
(Ⅱ)證明:直線的縱截距為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

求到兩定點,距離相等的點的坐標滿足的條件.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)P(a,b)(b≠0)是平面直角坐標系xOy中的點,l是經(jīng)過原點與點(1,b)的直線,記Q是直線l與拋物線x2=2pyp≠0)的異于原點的交點
⑴.已知a=1,b=2,p=2,求點Q的坐標。
⑵.已知點P(a,b)(ab≠0)在橢圓+y2=1上,p=,求證:點Q落在雙曲線4x2-4y2=1上。
⑶.已知動點P(a,b)滿足ab≠0,p=,若點Q始終落在一條關(guān)于x軸對稱的拋物線上,試問動點P的軌跡落在哪種二次曲線上,并說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)雙曲線的離心率為,右準線為。
(Ⅰ)求雙曲線C的方程;
(Ⅱ)已知直線與雙曲線C交于不同的兩點A,B,且線段AB的中點在圓上,求m的值.  

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)圓為坐標原點
(I)若直線過點,且圓心到直線的距離等于1,求直線的方程;
(II)已知定點,若是圓上的一個動點,點滿足,求動點的軌跡方程。

查看答案和解析>>

同步練習冊答案