已知θ為第一象限角,若將角θ的終邊逆時(shí)針旋轉(zhuǎn)
π
2
,則它與單位圓的交點(diǎn)坐標(biāo)是(  )
A、(cosθ,sinθ)
B、(cosθ,-sinθ)
C、(sinθ,-cosθ)
D、(-sinθ,cosθ)
考點(diǎn):任意角的三角函數(shù)的定義
專題:三角函數(shù)的求值
分析:根據(jù)任意角的三角函數(shù)的定義求得角θ的終邊與單位圓的交點(diǎn)坐標(biāo).然后利用誘導(dǎo)公式求出角θ的終邊逆時(shí)針旋轉(zhuǎn)
π
2
,則它與單位圓的交點(diǎn)坐標(biāo).
解答: 解:已知θ為第一象限角,角θ的終邊與單位圓的交點(diǎn)坐標(biāo)為(cosθ,sinθ),
將角θ的終邊逆時(shí)針旋轉(zhuǎn)
π
2
,得到角θ+
π
2
,
θ+
π
2
的終邊與單位圓的交點(diǎn)坐標(biāo)為(cos(θ+
π
2
),sin(θ+
π
2
)),即(-sinθ,cosθ)
故選:D.
點(diǎn)評(píng):本題主要考查任意角的三角函數(shù)的定義,誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(x3+x-1)5(2x+1)4展開式中奇次項(xiàng)的系數(shù)和等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x∈(
1
2
,1),a=log2x,b=2a,c=2a,則( 。
A、a<b<c
B、c<a<b
C、b<a<c
D、b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P,Q是雙曲線x2-y2=4
2
上關(guān)于原點(diǎn)O對(duì)稱的兩點(diǎn),將坐標(biāo)平面沿雙曲線的一條漸近線l折成直二面角,則折疊后線段PQ長的最小值為(  )
A、2
2
B、3
2
C、4
2
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=x3-2x+4在點(diǎn)(1,3)處的切線方程為( 。
A、3x-y=0
B、x+y-4=0
C、x-y+2=0
D、x-y-2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足an+1=an+n+1,且a1=1,則a10=( 。
A、55B、56C、65D、66

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“單獨(dú)二胎”政策的落實(shí)是我國完善計(jì)劃生育基本國策的一項(xiàng)重要措施,事先需要做大量的調(diào)研論證.現(xiàn)為了解我市市民對(duì)該項(xiàng)措施是否認(rèn)同,擬從全體市民中抽取部分樣本進(jìn)行調(diào)查.調(diào)查結(jié)果如下表:
調(diào)查人數(shù) 2 10 70 130 310 700 1500 2000 3000 5000
認(rèn)同人數(shù) 2 9 60 116 286 639 1339 1810 2097 4515
認(rèn)同頻率 1 0.9 0.857 0.892 0.922 0.913 0.893 0.905 0.899 0.903
則根據(jù)上表我們可以推斷市民認(rèn)同該項(xiàng)措施的概率最有可能為( 。
A、0.80B、0.85
C、0.90D、0.92

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是等比數(shù)列,a1=-1,a4=64,則S4=(  )
A、-51B、64C、85D、51

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x、y滿足y=-2x+8,且2≤x≤3,求
y
x
的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案