(本題15分)已知函數(shù)圖象的對(duì)稱中心為,且的極小值為.
(1)求的解析式;
(2)設(shè),若有三個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;
(3)是否存在實(shí)數(shù),當(dāng)時(shí),使函數(shù)
在定義域[a,b] 上的值域恰為[a,b],若存在,求出k的范圍;若不存在,說明理由.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若在上是增函數(shù),求實(shí)數(shù)的取值范圍;
(2)若是的極值點(diǎn),求在上的最小值和最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知函數(shù)f(x)=x3+mx2+nx-2的圖象過點(diǎn)(-1,-6),且函數(shù)g(x)=+6x的圖象關(guān)于y軸對(duì)稱.
(1)求m、n的值及函數(shù)y=f(x)的單調(diào)區(qū)間;(6分)
(2)若a>0,求函數(shù)y=f(x)在區(qū)間(a-1,a+1)內(nèi)的極值.(6分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中
若在x=1處取得極值,求a的值;
求的單調(diào)區(qū)間;
(Ⅲ)若的最小值為1,求a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)。
(1)若,函數(shù)在上既能取到極大值,又能取到極小值,求的取值范圍;
(2)當(dāng)時(shí),對(duì)任意的恒成立,求的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)=,.
(1)求函數(shù)在區(qū)間上的值域T;
(2)是否存在實(shí)數(shù),對(duì)任意給定的集合T中的元素t,在區(qū)間上總存在兩個(gè)不同的,使得成立.若存在,求出的取值范圍;若不存在,請(qǐng)說明理由;
(3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)求在點(diǎn)處的切線方程;
(2)若存在,使成立,求的取值范圍;
(3)當(dāng)時(shí),恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題14分)
線的斜率是-5。
(Ⅰ)求實(shí)數(shù)b、c的值;
(Ⅱ)求f(x)在區(qū)間[-1,2]上的最大值;
(Ⅲ)對(duì)任意給定的正實(shí)數(shù)a,曲線y=f(x)上是否存在兩點(diǎn)P、Q,使得△POQ是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在y軸上?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)為奇函數(shù),其圖象在點(diǎn)處的切線與直線垂直,導(dǎo)函數(shù)的最小值為.
(Ⅰ)求,,的值;(Ⅱ)求函數(shù)的單調(diào)遞增區(qū)間.
(Ⅲ)求函數(shù)在上的最大值和最小值
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com