函數(shù)y=2sin2x的圖象的一個對稱中心是(  )
A、(
π
2
,2)
B、(
π
4
,0)
C、(
π
4
,2)
D、(
π
2
,0)
考點:正弦函數(shù)的對稱性
專題:三角函數(shù)的圖像與性質(zhì)
分析:令2x=kπ,k∈z,求得x=
2
,可得函數(shù)的對稱中心的坐標(biāo)為(
2
,0),k∈z,從而得出結(jié)論.
解答: 解:對于函數(shù)y=2sin2x,令2x=kπ,k∈z,求得x=
2
,可得函數(shù)的對稱中心的坐標(biāo)為(
2
,0),k∈z,
故選:D.
點評:本題主要考查正弦函數(shù)的圖象的對稱性,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax2011+bsinx-5,且f(-2)=8,那么f(2)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,a1+a3+a8=
5
4
π,那么cos(a3+a5)=( 。
A、
1
2
B、-
1
2
C、
3
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點M(x,y,z)在坐標(biāo)平面xOy內(nèi)的射影為M1,M1在坐標(biāo)平面yOz內(nèi)的射影為M2,M2在坐標(biāo)平面xOz內(nèi)的射影為M3,則M3的坐標(biāo)為(  )
A、(-x,-y,-z)
B、(x,y,z)
C、(0,0,0)
D、(
x+y+z
3
,
x+y+z
3
,
x+y+z
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合P={x|y=
1-x
+lg(x+2)},Q={y|y=(
1
3
)
|x|
,x∈R},則P∩Q=(  )
A、(0,1)
B、(0,1]
C、[-2,1)
D、[-2,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)的定義域為R,對任意x∈R,有f(x+2)=f(x+1)-f(x),且f(1)=lg3-lg2,f(2)=lg3+lg5,則f(2013)的值為( 。
A、-1
B、1
C、lg
2
3
D、lg
1
15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}的前n項和為Sn,已知(a2-1)3+2011(a2-1)=
3
2
,(a2010-1)3+2011(a2010-1)=-
3
2
,則S2011等于(  )
A、0
B、2011
C、4022
D、2011
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ax2-2ax+2+b(a≠0)在閉區(qū)間[2,3]上有最大值5,最小值2,則a,b的值為( 。
A、a=1,b=0
B、a=1,b=0或a=-1,b=3
C、a=-1,b=3
D、以上答案均不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=1,2an+1=(1+
1
n
2an
(1)求{an}的通項公式;
(2)令bn=an+1-
1
2
an,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

同步練習(xí)冊答案