【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,若acos2+ccos2=b.
(1)求證:a,b,c成等差數列;
(2)若∠B=60°,b=4,求△ABC的面積.
【答案】(1)根據已知的邊角關系,結合二倍角公式來化簡得到證明.
(2)
【解析】
解:(1)證明:acos2+ccos2=a·+c·=b,
即a(1+cos C)+c(1+cos A)=3b.
由正弦定理得:
sin A+sin Acos C+sin C+cos Asin C=3sin B,
即sin A+sin C+sin(A+C)=3sin B,
∴sin A+sin C=2sin B.
由正弦定理得,a+c=2b,
故a,b,c成等差數列.
(2)由∠B=60°,b=4及余弦定理得:
42=a2+c2-2accos 60°,
∴(a+c)2-3ac=16,
又由(1)知a+c=2b,
代入上式得4b2-3ac=16,
解得ac=16,
∴△ABC的面積S=acsin B=acsin 60°=4.
科目:高中數學 來源: 題型:
【題目】如圖,幾何體是圓柱的一部分,它是由矩形ABCD(及其內部)以AB邊所在直線為旋轉軸旋轉120°得到的,G是的中點.
(1)設P是上的一點,且AP⊥BE,求∠CBP的大小;
(2)當AB=3,AD=2時,求二面角E-AG-C的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數學家歐拉在1765年發(fā)現,任意三角形的外心、重心、垂心位于同一條直線上,這條直線稱為歐拉線已知的頂點,若其歐拉線的方程為,則頂點的坐標為( )
A. B. C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C的中心在原點,一個焦點F(-2,0),且長軸長與短軸長的比為,
(1)求橢圓C的方程;
(2)設點M(m,0)在橢圓C的長軸上,設點P是橢圓上的任意一點,若當最小時,點P恰好落在橢圓的右頂點,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓過點,,且圓心在直線上,過點作直線與圓:交于兩點,.
(1)求圓的方程;
(2)當時,若于圓交于,且,求直線的方程;
(3)若點恰好是線段的中點,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校組織了一次新高考質量測評,在成績統(tǒng)計分析中,某班的數學成績的莖葉圖和頻率分布直方圖因故都受到不同程度的損壞,但可見部分如下,據此解答如下問題:
5 | 6 | 8 | ||||||||
6 | 2 | 3 | 3 | 5 | 6 | 8 | 9 | |||
7 | 1 | 2 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
8 | ||||||||||
9 | 5 | 8 |
(1)求該班數學成績在的頻率及全班人數;
(2)根據頻率分布直方圖估計該班這次測評的數學平均分;
(3)若規(guī)定90分及其以上為優(yōu)秀,現從該班分數在80分及其以上的試卷中任取2份分析學生得分情況,求在抽取的2份試卷中至少有1份優(yōu)秀的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2018年為我國改革開放40周年,某事業(yè)單位共有職工600人,其年齡與人數分布表如下:
年齡段 | ||||
人數(單位:人) | 180 | 180 | 160 | 80 |
約定:此單位45歲~59歲為中年人,其余為青年人,現按照分層抽樣抽取30人作為全市慶祝晚會的觀眾.
(1)抽出的青年觀眾與中年觀眾分別為多少人?
(2)若所抽取出的青年觀眾與中年觀眾中分別有12人和5人不熱衷關心民生大事,其余人熱衷關心民生大事.完成下列列聯表,并回答能否有的把握認為年齡層與熱衷關心民生大事有關?
熱衷關心民生大事 | 不熱衷關心民生大事 | 總計 | |
青年 | 12 | ||
中年 | 5 | ||
總計 | 30 |
(3)若從熱衷關心民生大事的青年觀眾(其中1人擅長歌舞,3人擅長樂器)中,隨機抽取2人上臺表演節(jié)目,則抽出的2人能勝任才藝表演的概率是多少?
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】恩格爾系數(記為)是指居民的食物支出占家庭消費總支出的比重.國際上常用恩格爾系數來衡量一個國家和地區(qū)人民生活水平的狀況.聯合國對消費水平的規(guī)定標準如下表:
家庭類型 | 貧窮 | 溫飽 | 小康 | 富裕 | 最富裕 |
實施精準扶貧以來,根據對某山區(qū)貧困家庭消費支出情況(單位:萬元)的抽樣調查,2018年每個家庭平均消費支出總額為2萬元,其中食物消費支出為1.2萬元預測2018年到2020年每個家庭平均消費支出總額每年的增長率約是30%,而食物消費支出平均每年增加0.2萬元,預測該山區(qū)的家庭2020年將處于( )
A.貧困水平B.溫飽水平C.小康水平D.富裕水平
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com