【題目】為減少空氣污染,某市鼓勵居民用電(減少燃氣或燃煤),采用分段計費的方法計算電費.每月用電不超過100度時,按每度0.57元計算,每月用電量超過100度時,其中的100度仍按原標準收費,超過的部分每度按0.5元計算.
(1)設月用電x度時,應交電費y元,寫出y關于x的函數(shù)關系式;
(2)小明家第一季度繳納電費情況如下:問小明家第一季度共用電多少度?

月份

一月

二月

三月

合計

交費金額

76元

63元

45.6元

184.6元

【答案】
(1)解:由題可得 =
(2)解:一月用電 x+7=76

x=138

二月用電 x+7=63

x=112

三月用電0.57x=45.6

x=80

∴第一季度共用138+112+80=330度


【解析】(1)根據(jù)應交電費=月用電度數(shù)×每度電費建立函數(shù)關系,因為每度電費標準不一樣,需要分類討論;(2)分別根據(jù)每月所交電費,求出每月所用電的度數(shù),最后相交即可求出所求.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(x﹣2)的定義域為集合A,函數(shù)的值域為集合B.
(1)求A∪B;
(2)若集合C={x|a≤x≤3a﹣1},且B∩C=C,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形均為菱形, ,且.

(l)求證:

(2)求證:

(3)設,求四面體的體積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本題滿分10分)

已知橢圓 的左焦點為,右焦點為,離心率.的直線交橢圓于、兩點,且的周長為.

1)求橢圓的方程;

2)設動直線與橢圓有且只有一個公共點,且與直線相交于點.求證:以為直徑的圓恒過一定點.并求出點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的方程是,雙曲線的左右焦點分別為的左右頂點,而的左右頂點分別是的左右焦點.

1)求雙曲線的方程;

2)若直線與雙曲線恒有兩個不同的交點,且的兩個交點AB滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,點分別為橢圓的右頂點、上頂點和右焦點,且

(1)求橢圓的標準方程;

(2)設直線與橢圓交于兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設f(x)是[0,1]上的不減函數(shù),即對于0≤x1≤x2≤1有f(x1)≤f(x2),且滿足(1)f(0)=0;(2)f( )= f(x);(3)f(1﹣x)=1﹣f(x),則f( )=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班50名學生在一次百米測試中,成績全部介于13秒與18秒之間,將測試結果按如下方式分成五組:第一組,第二組,…,第五組,如圖是按上述分組方法得到的頻率分布直方圖.

(1)根據(jù)頻率分布直方圖,估計這50名學生百米測試成績的中位數(shù)和平均值(精確到);

(2)若從第一、五組中隨機取出兩個成績,列舉所有選取方法,并求這兩個成績的差的絕對值大于1的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)),曲線在點處的切線與直線垂直.

(Ⅰ)試比較的大小,并說明理由;

(Ⅱ)若函數(shù)有兩個不同的零點 ,證明: .

查看答案和解析>>

同步練習冊答案