【題目】國慶期間,某旅行社組團(tuán)去風(fēng)景區(qū)旅游,若旅行團(tuán)人數(shù)不超過20人,每人需交費用800元;若旅行團(tuán)人數(shù)超過20人,則給予優(yōu)惠:每多1人,人均費用減少10元,直到達(dá)到規(guī)定人數(shù)60人為止.旅行社需支付各種費用共計10000.

(1)寫出每人需交費用S關(guān)于旅行團(tuán)人數(shù)的函數(shù);

(2)旅行團(tuán)人數(shù)x為多少時,旅行社可獲得最大利潤?最大利潤是多少?

【答案】(1) (2)當(dāng)旅行團(tuán)人數(shù)為50人時,旅行社可獲得最大利潤,最大利潤是16000

【解析】

1)根據(jù)題意,按分別寫出每人所交費用的函數(shù)關(guān)系;(2)用(1)得到的人均費用乘以人數(shù),再減去支付費用,得到利潤,并求出每段的最大值,得到答案.

解:(1)當(dāng)時,,

當(dāng),,

所以

(2)旅行社可獲得利潤為,

所以,

當(dāng)時,為增函數(shù),

所以時,

當(dāng)時,,

所以當(dāng)時,

所以當(dāng)旅行團(tuán)人數(shù)為人時,旅行社可獲得最大利潤,最大利潤是元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在原點,焦點在x軸上的橢圓C的離心率為,且經(jīng)過點M(1,),過點P(2,1)的直線l與橢圓C相交于不同的兩點A,B.

1)求橢圓C的方程;

2)是否存在直線l,滿足?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年2月22日.在平昌冬奧會短道速滑男子500米比賽中.中國選手武大靖以連續(xù)打破世界紀(jì)錄的優(yōu)異表現(xiàn),為中國代表隊奪得了本屆冬奧會的首枚金牌,也創(chuàng)造中國男子冰上競速項目在冬奧會金牌零的突破.某高校為調(diào)查該校學(xué)生在冬奧會期間累計觀看冬奧會的時間情況.收集了200位男生、100位女生累計觀看冬奧會時間的樣本數(shù)據(jù)(單位:小時).又在100位女生中隨機抽取20個人.已知這20位女生的數(shù)據(jù)莖葉圖如圖所示.

(1)將這20位女生的時間數(shù)據(jù)分成8組,分組區(qū)間分別為,在答題卡上完成頻率分布直方圖;

(2)以(1)中的頻率作為概率,求1名女生觀看冬奧會時間不少于30小時的概率;

(3)以(1)中的頻率估計100位女生中累計觀看時間小于20個小時的人數(shù).已知200位男生中累計觀看時間小于20小時的男生有50人請完成答題卡中的列聯(lián)表,并判斷是否有99 %的把握認(rèn)為“該校學(xué)生觀看冬奧會累計時間與性別有關(guān)”.

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

附:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)上的偶函數(shù),上的奇函數(shù),且.

1)求的解析式;

2)若函數(shù)上只有一個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2022年北京冬奧會的申辦成功與“3億人上冰雪”口號的提出,將冰雪這個冷項目迅速炒“熱”.北京某綜合大學(xué)計劃在一年級開設(shè)冰球課程,為了解學(xué)生對冰球運動的興趣,隨機從該校一年級學(xué)生中抽取了100人進(jìn)行調(diào)查,其中女生中對冰球運動有興趣的占,而男生有10人表示對冰球運動沒有興趣額.

(1)完成列聯(lián)表,并回答能否有的把握認(rèn)為“對冰球是否有興趣與性別有關(guān)”?

有興趣

沒興趣

合計

55

合計

(2)若將頻率視為概率,現(xiàn)再從該校一年級全體學(xué)生中,采用隨機抽樣的方法每次抽取1名學(xué)生,抽取5次,記被抽取的5名學(xué)生中對冰球有興趣的人數(shù)為,若每次抽取的結(jié)果是相互獨立的,求的分布列,期望和方差.

附表:

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(多選題)設(shè)正實數(shù)滿足,則()

A. 有最小值4B. 有最小值

C. 有最大值D. 有最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲題型:給出如圖數(shù)陣表格形式,表格內(nèi)是按某種規(guī)律排列成的有限個正整數(shù).

(1)記第一行的自左至右構(gòu)成數(shù)列,的前項和,試求;

(2)記為第列第行交點的數(shù)字,觀察數(shù)陣請寫出表達(dá)式,若,試求出的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為奇函數(shù).

1)求的值,并求的定義域;

2)判斷函數(shù)的單調(diào)性,不需要證明;

3)若對于任意,是否存在實數(shù),使得不等式恒成立?若存在,求出實數(shù)的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動圓過定點且與軸相切,點關(guān)于圓心的對稱點為,動點的軌跡記為.

(1)求的方程;

(2)設(shè)直線與曲線交于點、;直線交于點,,其中,以、為直徑的圓、為圓心)的公共弦所在直線記為,求到直線距離的最小值.

查看答案和解析>>

同步練習(xí)冊答案