【題目】已知函數(shù)(x>2),若恒成立,則整數(shù)k的最大值為( )
A. B. C. D.
【答案】B
【解析】
由題得h(x)=>k即h(x)的最小值大于k,h′(x)=,記g(x)
=x﹣3﹣ln(x-1),(x>2),通過g(x)找到函數(shù)h(x)的單調(diào)性和最小值即得解.
f(x)>恒成立,即h(x)=>k即h(x)的最小值大于k.
而h′(x)=,記g(x)=x﹣3﹣ln(x-1),(x>2),
則g′(x)=>0,∴g(x)在(2,+∞)上單調(diào)遞增,
又g(4)=1﹣ln3<0,g(5)=2﹣2ln2>0,
∴g(x)=0存在唯一實(shí)根a,且滿足a∈(4,5),a-3=ln(a-1),
當(dāng)x>a時(shí),g(x)>0,h′(x)>0,
當(dāng)2<x<a時(shí),g(x)<0,h′(x)<0,
∴h(x)min=h(a)==a-1∈(3,4),
故正整數(shù)k的最大值是3.
故答案為:B
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是圓內(nèi)一個(gè)定點(diǎn),是圓上任意一點(diǎn).線段的垂直平分線和半徑相交于點(diǎn).
(Ⅰ)當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),點(diǎn)的軌跡是什么曲線?并求出其軌跡方程;
(Ⅱ)過點(diǎn)作直線與曲線交于、兩點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)P的極坐標(biāo)為,直線l的極坐標(biāo)方程為ρcos=a,且點(diǎn)P在直線l上.
(1)求a的值及直線l的直角坐標(biāo)方程;
(2)曲線的極坐標(biāo)方程為.若與交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,對(duì)一切正整數(shù),點(diǎn)都在函數(shù)的圖象上,記與的等差中項(xiàng)為.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,求數(shù)列的前項(xiàng)和;
(Ⅲ)設(shè)集合,,等差數(shù)列的任意一項(xiàng),其中是中的最小數(shù),且,求的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐S一ABC中,SA=AB=AC=BC=SB=SC,O為BC的中點(diǎn)
(1)求證:SO⊥平面ABC
(2)在線段AB上是否存在一點(diǎn)E,使二面角B—SC-E的平面角的余弦值為?若存在,求的值,若不存在,試說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校共有教師300人,其中中級(jí)教師有120人,高級(jí)教師與初級(jí)教師的人數(shù)比為.為了解教師專業(yè)發(fā)展要求,現(xiàn)采用分層抽樣的方法進(jìn)行調(diào)查,在抽取的樣本中有中級(jí)教師72人,則該樣本中的高級(jí)教師人數(shù)為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的焦點(diǎn)為,準(zhǔn)線為.已知以為圓心,半徑為4的圓與交于、兩點(diǎn),是該圓與拋物線的一個(gè)交點(diǎn),.
(1)求的值;
(2)已知點(diǎn)的縱坐標(biāo)為且在上,、是上異于點(diǎn)的另兩點(diǎn),且滿足直線和直線的斜率之和為,試問直線是否經(jīng)過一定點(diǎn),若是,求出定點(diǎn)的坐標(biāo),否則,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知若橢圓:()交軸于,兩點(diǎn),點(diǎn)是橢圓上異于,的任意一點(diǎn),直線,分別交軸于點(diǎn),,則為定值.
(1)若將雙曲線與橢圓類比,試寫出類比得到的命題;
(2)判定(1)類比得到命題的真假,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com