【題目】在極坐標(biāo)系中,已知圓C的圓心C( , ),半徑r=
(1)求圓C的極坐標(biāo)方程;
(2)若α∈[0, ),直線l的參數(shù)方程為 (t為參數(shù)),直線l交圓C于A、B兩點(diǎn),求弦長(zhǎng)|AB|的取值范圍.

【答案】
(1)解:∵C( , )的直角坐標(biāo)為(1,1),

∴圓C的直角坐標(biāo)方程為(x﹣1)2+(y﹣1)2=3.

化為極坐標(biāo)方程是ρ2﹣2ρ(cosθ+sinθ)﹣1=0


(2)解:將 代入圓C的直角坐標(biāo)方程(x﹣1)2+(y﹣1)2=3,

得(1+tcosα)2+(1+tsinα)2=3,

即t2+2t(cosα+sinα)﹣1=0.

∴t1+t2=﹣2(cosα+sinα),t1t2=﹣1.

∴|AB|=|t1﹣t2|= =2

∵α∈[0, ),∴2α∈[0, ),

∴2 ≤|AB|<2

即弦長(zhǎng)|AB|的取值范圍是[2 ,2


【解析】(1)先利用圓心坐標(biāo)與半徑求得圓的直角坐標(biāo)方程,再利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2 , 進(jìn)行代換即得圓C的極坐標(biāo)方程.(2)設(shè)A,B兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為t1 , t2 , 則|AB|=|t1﹣t2|,化為關(guān)于α的三角函數(shù)求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線y=k(x+3)(k>0)與拋物線C:y2=12x相交于A,B兩點(diǎn),FC的焦點(diǎn),|FA|=3|FB|,k的值等于_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓C的離心率為,點(diǎn)(0,)是橢圓與y軸的一個(gè)交點(diǎn).

(1)求橢圓C的方程;

(2)直線x=2與橢圓交于P,Q兩點(diǎn),點(diǎn)P位于第一象限,A,B是橢圓上位于直線x=2兩側(cè)的動(dòng)點(diǎn);

若直線AB的斜率為,求四邊形APBQ面積的取值范圍;

當(dāng)點(diǎn)A,B在橢圓上運(yùn)動(dòng),且滿足∠APQ=∠BPQ時(shí),直線AB的斜率是否為定值?若是,求出此定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}的通項(xiàng)an=n2(cos2 ﹣sin2 ),其前n項(xiàng)和為Sn , 則S30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱柱ABCD﹣A1B1C1D1中,A1A⊥底面ABCD,四邊形ABCD為梯形,AD∥BC,且AD=2BC,過A1、C、D三點(diǎn)的平面記為α,BB1與α的交點(diǎn)為Q.

(1)證明:Q為BB1的中點(diǎn);
(2)若AA1=4,CD=2,梯形ABCD的面積為6,∠ADC=60°,求平面α與底面ABCD所成銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn)P(3,0)在圓C:(x﹣m)2+(y﹣2)2=40內(nèi),動(dòng)直線AB過點(diǎn)P且交圓C于A、B兩點(diǎn),若△ABC的面積的最大值為20,則實(shí)數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,A,B分別是橢圓C:=1(a>b>0)的左右頂點(diǎn),F為其右焦點(diǎn),2|AF||FB|的等差中項(xiàng),|AF||FB|的等比中項(xiàng).點(diǎn)P是橢圓C上異于A,B的任一動(dòng)點(diǎn),過點(diǎn)A作直線l⊥x.以線段AF為直徑的圓交直線AP于點(diǎn)A,M,連接FM交直線l于點(diǎn)Q.

(1)求橢圓C的方程;

(2)試問在x軸上是否存在一個(gè)定點(diǎn)N,使得直線PQ必過該定點(diǎn)N?若存在,求出點(diǎn)N的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,使 成立,則稱為函數(shù)的一個(gè)“生成點(diǎn)”,則函數(shù)的“生成點(diǎn)”共有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四面體ABCD中,AB,BC,CD兩兩互相垂直,且BC=CD=1.

(1)求證:平面ACD平面ABC;

(2)求二面角C-AB-D的大小;

查看答案和解析>>

同步練習(xí)冊(cè)答案