定義由如圖框圖表示的運算,若f(x)=|x+2014|-|x-2014|,則輸出y=( 。
A、0B、1C、2D、4
考點:程序框圖
專題:計算題,算法和程序框圖
分析:算法的功能是求y=
f(0)        滿足f(-x)=f(x)
f(1)       不滿足f(-x)=f(x)
的值,判斷函數(shù)f(x)=|x+2014|-|x-2014|是否滿足條件,計算輸出的y值.
解答: 解:由程序框圖知:算法的功能是求y=
f(0)        滿足f(-x)=f(x)
f(1)       不滿足f(-x)=f(x)
的值,
∵f(-x)=|-x+2014|-|-x-2014|=-f(x),
不滿足f(-x)=f(x),∴輸出y=f(1)=2015-2013=2.
故選:C.
點評:本題考查了選擇結(jié)構(gòu)的程序框圖,根據(jù)框圖的流程判斷算法的功能是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

定義在R上的奇函數(shù)f(x)滿足f(2-x)=f(x),且在[0,1)上單調(diào)遞減,若方程f(x)=-1在[0,1)上有實數(shù)根,則方程f(x)=1在區(qū)間[-1,7]上所有實根之和是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x-m<0},B={y|y=x2+2x,x∈R},若A∩B=∅,則實數(shù)m的范圍為(  )
A、m≤-1B、m≤0
C、m<-1D、m∈R

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右頂點、左焦點分別為A、F,點B(0,-b),若|
BA
+
BF
|=|
BA
-
BF
|,則橢圓的離心率值為( 。
A、
5
-1
2
B、
3
+1
2
C、
3
-1
2
D、
5
+1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:?φ∈R,使f(x)=sin(x+φ)為偶函數(shù);命題q:函數(shù)y=tanx在(
π
2
,π)上單調(diào)遞減,則下列命題為真命題的是(  )
A、p∧q
B、(¬p)∨q
C、(¬p)∧(¬q)
D、(¬p)∨(¬q)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是定義在R上的函數(shù),命題p:f(x)滿足?x∈R,f(-x)=-f(x),命題q:f(0)=0,則命題p是命題q的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
1-(x+2)2
圖象上存在不同的三點到原點的距離成等比數(shù)列,則
1
2
3
3
,
3
2
3
,2這五個數(shù)中可以成為公比的數(shù)的個數(shù)是( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,
AE
=2
EB
BC
=2
BD
,則
DE
=(  )
A、-
1
3
AB
-
1
2
BC
B、
1
3
AB
-
1
2
BC
C、
1
2
AB
-
1
3
BC
D、-
1
3
AB
+
1
2
BC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正項數(shù)列{an}滿足f(an)=
2
2-an
(an≠2),且{an}的前n項和Sn=
1
4
[3-
2
f(an)
]2
(Ⅰ)求證:{an}是等差數(shù)列;
(Ⅱ)若bn=
an
2n
,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習冊答案