【題目】徐州市為加快新老城區(qū)的融合并進(jìn)一步緩解交通壓力,現(xiàn)經(jīng)過(guò)食品城至新城區(qū)(昆侖大道)和食品城至高速入口(迎賓大道),分別修建地鐵2號(hào)線和快速通道,如圖,已知兩條公路夾角為60°,為了便于施工擬在兩條公路之間的區(qū)域內(nèi)建一混凝土攪拌站P,并分別在兩條公路邊上建兩個(gè)中轉(zhuǎn)站MN (異于點(diǎn)A),要求PMPNMN=2(單位:千米).

(1)

(2)問(wèn)為多大時(shí),使得混凝土攪拌站產(chǎn)生的噪聲對(duì)食品城的影響最小(即攪拌站與食品城的距離最遠(yuǎn)).

【答案】(1)見(jiàn)解析;(2)設(shè)計(jì)∠AMN60時(shí),混凝土攪拌站產(chǎn)生的噪聲對(duì)食品城的影響最。

【解析】試題分析:(1)根據(jù)正弦定理,即可θ表示AM;(2)根據(jù)三角函數(shù)的圖象和性質(zhì),即可求出函數(shù)的最值.

試題解析:

(1)因?yàn)椤?/span>AMNθ,在△AMN中,

因?yàn)?/span>MN=2,所以AMsin(120°-θ) .

(2)在△APM中,cos∠AMP=cos(60°+θ).

由(1AMsin(120°-θ)

所以AP2AM2MP2-2 AM·MP·cos∠AMP

sin2(120°-θ)+4-2×2×sin(120°-θ) cos(60°+θ)

sin2(θ+60°)-sin(θ+60°) cos(θ+60°)+4

[1-cos (2θ+120°)]-sin(2θ+120°)+4…

=- [sin(2θ+120°)+cos (2θ+120°)]+

sin(2θ+150°),θ∈(0,120°).

當(dāng)且僅當(dāng)2θ+150°=270°,即θ=60°時(shí),AP2取得最大值12,即AP取得最大值2

答:設(shè)計(jì)∠AMN60時(shí),混凝土攪拌站產(chǎn)生的噪聲對(duì)食品城的影響最。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】北京時(shí)間3月10日,CBA半決賽開(kāi)打,采用7局4勝制(若某對(duì)取勝四場(chǎng),則終止本次比賽,并獲得進(jìn)入決賽資格),采用2﹣3﹣2的賽程,遼寧男籃將與新疆男籃爭(zhēng)奪一個(gè)決賽名額,由于新疆隊(duì)常規(guī)賽占優(yōu),決賽時(shí)擁有主場(chǎng)優(yōu)勢(shì)(新疆先兩個(gè)主場(chǎng),然后三個(gè)客場(chǎng),再兩個(gè)主場(chǎng)),以下是總決賽賽程:

日期

比賽隊(duì)

主場(chǎng)

客場(chǎng)

比賽時(shí)間

比賽地點(diǎn)

17年3月10日

新疆﹣遼寧

新疆

遼寧

20:00

烏魯木齊

17年3月12日

新疆﹣遼寧

新疆

遼寧

20:00

烏魯木齊

17年3月15日

遼寧﹣新疆

遼寧

新疆

20:00

本溪

17年3月17日

遼寧﹣新疆

遼寧

新疆

20:00

本溪

17年3月19日

遼寧﹣新疆

遼寧

新疆

20:00

本溪

17年3月22日

新疆﹣遼寧

新疆

遼寧

20:00

烏魯木齊

17年3月24日

新疆﹣遼寧

新疆

遼寧

20:00

烏魯木齊


(1)若考慮主場(chǎng)優(yōu)勢(shì),每個(gè)隊(duì)主場(chǎng)獲勝的概率均為 ,客場(chǎng)取勝的概率均為 ,求遼寧隊(duì)以比分4:1獲勝的概率;
(2)根據(jù)以往資料統(tǒng)計(jì),每場(chǎng)比賽組織者可獲得門票收入50萬(wàn)元(與主客場(chǎng)無(wú)關(guān)),若不考慮主客場(chǎng)因素,每個(gè)隊(duì)每場(chǎng)比賽獲勝的概率均為 ,設(shè)本次半決賽中(只考慮這兩支隊(duì))組織者所獲得的門票收入為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列命題:

①若 是第一象限角且 ,則 ;

②函數(shù)上是減函數(shù);

是函數(shù) 的一條對(duì)稱軸;

④函數(shù) 的圖象關(guān)于點(diǎn) 成中心對(duì)稱;

⑤設(shè) ,則函數(shù) 的最小值是,其中正確命題的序號(hào)為 __________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正項(xiàng)數(shù)列{an}的首項(xiàng)a1=1,且(n+1)a +anan+1﹣na =0對(duì)n∈N*都成立.
(1)求{an}的通項(xiàng)公式;、
(2)記bn=a2n﹣1a2n+1 , 數(shù)列{bn}的前n項(xiàng)和為Tn , 證明:Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=(x﹣2)ex+a(x+2)2(x>0).
(1)若f(x)是(0,+∞)的單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)當(dāng) 時(shí),求證:函數(shù)f(x)有最小值,并求函數(shù)f(x)最小值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)招聘中,依次進(jìn)行A科、B科考試,當(dāng)A科合格時(shí),才可考B科,且兩科均有一次補(bǔ)考機(jī)會(huì),兩科都合格方通過(guò).甲參加招聘,已知他每次考A科合格的概率均為 ,每次考B科合格的概率均為 .假設(shè)他不放棄每次考試機(jī)會(huì),且每次考試互不影響.
(I)求甲恰好3次考試通過(guò)的概率;
(II)記甲參加考試的次數(shù)為ξ,求ξ的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知{an}是首項(xiàng)為19,公差為-2的等差數(shù)列,Sn為{an}的前n項(xiàng)和.

(1)求通項(xiàng)anSn;

(2)設(shè){bnan}是首項(xiàng)為1,公比為3的等比數(shù)列,求數(shù)列{bn}的通項(xiàng)公式及前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在考試測(cè)評(píng)中,常用難度曲線圖來(lái)檢測(cè)題目的質(zhì)量,一般來(lái)說(shuō),全卷得分高的學(xué)生,在某道題目上的答對(duì)率也應(yīng)較高,如果是某次數(shù)學(xué)測(cè)試壓軸題的第1、2問(wèn)得分難度曲線圖,第1、2問(wèn)滿分均為6分,圖中橫坐標(biāo)為分?jǐn)?shù)段,縱坐標(biāo)為該分?jǐn)?shù)段的全體考生在第1、2問(wèn)的平均難度,則下列說(shuō)法正確的是(
A.此題沒(méi)有考生得12分
B.此題第1問(wèn)比第2問(wèn)更能區(qū)分學(xué)生數(shù)學(xué)成績(jī)的好與壞
C.分?jǐn)?shù)在[40,50)的考生此大題的平均得分大約為4.8分
D.全體考生第1問(wèn)的得分標(biāo)準(zhǔn)差小于第2問(wèn)的得分標(biāo)準(zhǔn)差

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知不等式|x+3|﹣2x﹣1<0的解集為(x0 , +∞)
(Ⅰ)求x0的值;
(Ⅱ)若函數(shù)f(x)=|x﹣m|+|x+ |﹣x0(m>0)有零點(diǎn),求實(shí)數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案