連結球面上兩點的線段稱為球的弦.半徑為4的球的兩條弦
的長度分別等于
分別為
的中點,每條弦的兩端都在球面上運動,有下列四個結論:
①弦
可能相交于點
;②弦
可能相交于點
;
③
的最大值為5; 、
的最小值為1.
其中正確結論的個數(shù)為( )
解:因為直徑是8,則①③④正確;②錯誤.易求得M、N到球心O的距離分別為3、2,若兩弦交于N,則OM⊥MN,Rt△OMN中,有OM<ON,矛盾.當M、O、N共線時分別取最大值5最小值1.故選C.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題8分)
如圖,點
為斜三棱柱
的側棱
上一點,
交
于點
,
交
于點
.
(1) 求證:
;
(2) 在任意
中有余弦定理:
. 拓展到空間,類比三角形的余弦定理,寫出斜三棱柱的三個側面面積與其中兩個側面所成的二面角之間的關系式(只寫結論,不必證明)
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在三棱錐
中,
,
,
,點
、
、
分別為
、
、
的中點.
(1)求直線
與平面
所成角的正弦值;
(2)求二面角
的大小.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
如圖,在正三棱柱
中,已知
在棱
上,且
,若
與平面
所成的角為
,則
為
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設m,n為兩條直線,α,β為兩個平面,則下列四個命題中,正確的命題是( )
A.若m?α,n?α,且m∥β,n∥β,則α∥β |
B.若m∥α,m∥n,則n∥α |
C.若m∥α,n∥α,則m∥n |
D.若m,n為兩條異面直線,且m∥α,n∥α,m∥β,n∥β,則α∥β |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
若長方體的一個頂點上的三條棱的長分別為
,從長方體的一條對角線的一個
端點出發(fā),沿表面運動到另一個端點,其最短路程是______________。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖, 在空間四邊形SABC中,
平面ABC,
,
于N,
于M.
求證:①AN^BC; ②平面SAC^平面ANM
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
(如右圖) 在正方體ABCD-A
1B
1C
1D
1中,
(1)證明:平面AB
1D
1∥平面BDC
1 (2)設M為A
1D
1的中點,求直線BM與平面BB
1D
1D所成角的正弦值.
查看答案和解析>>