下列函數(shù)中增加得最快的是( 。
A、y=2x
B、y=3x
C、y=4x
D、y=ex
考點:對數(shù)函數(shù)、指數(shù)函數(shù)與冪函數(shù)的增長差異
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:直接根據(jù)正比例函數(shù)、指數(shù)函數(shù)的增長差異,得出結(jié)論.
解答: 解:由于函數(shù)y=2x,y=3x,y=4x是正比咧函數(shù),
函數(shù)y=ex是指數(shù)函數(shù),
由于指數(shù)函數(shù)的增長速度最快,
故選D.
點評:本題主要考查正比例函數(shù)、指數(shù)函數(shù)的增長差異,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2sinx,各項均不相等的有限項數(shù)列{xn}的各項xi滿足|xi|≤1.令F(n)=
n
i=1
x1
n
i=1
f(xi)
,n≥3且n∈N,例如:F(3)=(x1+x2+x3)•(f(x1)+f(x2)+f(x3)).
下列給出的結(jié)論中:
①存在數(shù)列{xn}使得F(n)=0;
②如果數(shù)列{xn}是等差數(shù)列,則F(n)>0;
③如果數(shù)列{xn}是等比數(shù)列,則F(n)>0;
正確結(jié)論的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
1
3
x3+
1
2
ax2+(a-1)x+1在區(qū)間(-1,1)上是減函數(shù),在區(qū)間(2,3)是增函數(shù),則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=ax+1-2(a>0,a≠1)的圖象恒過定點A,若點A在直線mx+ny+1=0上,其中m、n>0,則
1
m
+
2
n
的最小值為( 。
A、3
B、3+2
2
C、2+2
2
D、2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

參數(shù)方程
x=cosθ
y=1+cosθ
(θ為參數(shù))表示的曲線是( 。
A、圓B、直線C、線段D、射線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出如圖所示函數(shù)圖象

其中可能為函數(shù)f(x)=ax3+bx2+cx+d(a≠0)的圖象是( 。
A、①②B、②④C、①③D、③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2xlnx,g(x)=-x2+ax-3,對一切x∈(0,+∞),f(x)≥g(x)恒成立,則實數(shù)a的取值范圍是(  )
A、(-∞,4]
B、(-∞,5]
C、[6,+∞)
D、[4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若連續(xù)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),且函數(shù)y=(2-x)f′(x)的圖象如圖所示,則下列結(jié)論中一定成立的是(  )
A、f(x)有極大值f(3)和極小值f(2)
B、f(x)有極大值f(-3)和極小值f(2)
C、f(x)有極大值f(3)和極小值f(-3)
D、f(x)有極大值f(-3)和極小值f(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:f(x)-cos(
6n+1
3
π+2x)+cos(
6n-1
3
π-2x)+2
3
sin(
π
3
+2x)(x∈R,n∈Z),
(1)求函數(shù)f(x)的值域和最小正周期;
(2)寫出f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案