與直線
平行的拋物線
的切線方程是
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知動點P與
平面上兩定點
連線的斜率的積為定值
.
(1)試求動點P的軌跡方程C.
(2)設直線
與曲線C交于M、N兩點,求|MN|
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分15分)已知點
,一動圓過點
且與圓
內(nèi)切.
(Ⅰ)求動圓圓心的軌跡
的方程;
(Ⅱ)設點
,點
為曲線
上任一點,求點
到點
距離的最大值
;
(Ⅲ)在
的條件下,設△
的面積為
(
是坐標原點,
是曲線
上橫坐標為
的點),以
為邊長的正方形的面積為
.若正數(shù)
滿足
,問
是否存在最小值,若存在,請求出此最小值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)在平面直角坐標系中,已知
,
,
(
),
,O為坐標原點,若實數(shù)
使向量
,
和
滿足:
,設點P的軌跡為
.
(Ⅰ)求
的方程,并判斷
是怎樣的曲線;
(Ⅱ)當
時,過點
且斜率為1的直線與
相交的另一個交點為
,能否在直線
上找到一點
,恰使
為正三角形?請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
求曲線的方程:
(1)求中心在原點,左焦點為
,且右頂點為
的橢圓方程;
(2)求中心在原點,一個頂點坐標為
,焦距為10的雙曲
線方程。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分16分)
如圖,點
A在直線
上移動,等腰△
OPA的頂角∠
OPA為120°(
O,
P,
A按順時針方向排列),求點
P的軌跡方程
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知圓
上的動點,點Q在NP上,點G在MP上,且滿足
.
(I)求點G的軌跡C的方程;
(II)過點(2,0)作直線
l,與曲線C交于A、B兩點,O是坐標原點,設
是否存在這樣的直線
l,使四邊形OASB的對角線相等(即|OS|=|AB|)?若存在,求出直線
l的方程;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
若
是過圓錐曲線中心的任一條弦,
是二次曲線上異于
的任一點,且
均與坐標軸不平行,則對于橢圓
,有
,類似的,對于雙曲線
,有
。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(12分)在區(qū)間[0,1]上給定曲線
,試在此區(qū)間內(nèi)確定t的值,使圖中的陰影部分面積s
1與s
2之和最小.
查看答案和解析>>