【題目】已知冪函數(shù),滿足

)求函數(shù)的解析式.

)若函數(shù),,是否存在實(shí)數(shù)使得的最小值為?

若存在,求出的值;若不存在,說(shuō)明理由.

)若函數(shù),是否存在實(shí)數(shù),,使函數(shù)上的值域?yàn)?/span>?若存在,求出實(shí)數(shù)的取值范圍;若不存在,說(shuō)明理由.

【答案】;(;(

【解析】試題分析:(1)根據(jù)冪函數(shù)是冪函數(shù),可得,求解的值,即可得到函數(shù)的解析式;

(2)由函數(shù),利用換元法轉(zhuǎn)化為二次函數(shù)問題,求解其最小值,即可求解實(shí)數(shù)的取值范圍;

(3)由函數(shù),求解的解析式,判斷其單調(diào)性,根據(jù)在上的值域?yàn)?/span>,轉(zhuǎn)化為方程有解問題,即可求解的取值范圍

試題解析:

)∵為冪函數(shù),,∴

當(dāng)時(shí),上單調(diào)遞減,

不符合題意.

當(dāng)時(shí),上單調(diào)遞增,

,符合題意.

.∵,∴,∴,

當(dāng)時(shí),時(shí),有最小值,

,

當(dāng)時(shí),時(shí),有最小值.,(舍).

當(dāng)時(shí),時(shí),有最小值,

,(舍).綜上

,

易知在定義域上單調(diào)遞減,

,即,

,

,,∴,∴,

,

,∴,∴,

,∴,∴,

.∴

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“共享單車”的出現(xiàn),為我們提供了一種新型的交通方式.某機(jī)構(gòu)為了調(diào)查人們對(duì)此種交通方式的滿意度,從交通擁堵不嚴(yán)重的 城市和交通擁堵嚴(yán)重的 城市分別隨機(jī)調(diào)查了20個(gè)用戶,得到了一個(gè)用戶滿意度評(píng)分的樣本,并繪制出莖葉圖(如圖所示):

若得分不低于80分,則認(rèn)為該用戶對(duì)此種交通方式“認(rèn)可”,否則認(rèn)為該用戶對(duì)此種交通方式“不認(rèn)可”,請(qǐng)根據(jù)此樣本完成此 列聯(lián)表,并據(jù)此樣本分析是否有 的把握認(rèn)為城市擁堵與認(rèn)可共享單車有關(guān):

合計(jì)

認(rèn)可

不認(rèn)可

合計(jì)

附:參考數(shù)據(jù):(參考公式:

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)
(1)若函數(shù)F(x)= +ax2 上為減函數(shù),求 的取值范圍;
(2)當(dāng) 時(shí), ,當(dāng) 時(shí),方程 - =0有兩個(gè)不等的實(shí)根,求實(shí)數(shù) 的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2﹣ax﹣aln(x﹣1)(a∈R)
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的最值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義域?yàn)镽的函數(shù)f(x)= 是奇函數(shù).
(Ⅰ)求a,b的值;
(Ⅱ)已知f(x)在定義域上為減函數(shù),若對(duì)任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0(k為常數(shù))恒成立.求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知n為正整數(shù),在二項(xiàng)式( +2x)n的展開式中,若前三項(xiàng)的二項(xiàng)式系數(shù)的和等于79.
(1)求n的值;
(2)判斷展開式中第幾項(xiàng)的系數(shù)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某花店每天以每枝5元的價(jià)格從農(nóng)場(chǎng)購(gòu)進(jìn)若干枝玫瑰花,然后以每枝10元的價(jià)格出售.如果當(dāng)天賣不完,剩下的玫瑰花作垃圾處理.

日需求量n

14

15

16

17

18

19

20

  數(shù)

10

20

16

16

15

13

10

(1)若花店一天購(gòu)進(jìn)17枝玫瑰花,求當(dāng)天的利潤(rùn)y(單位:元)關(guān)于當(dāng)天需求量n(單位:枝,n∈N)的函數(shù)解析式;

(2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:

假設(shè)花店在這100天內(nèi)每天購(gòu)進(jìn)17枝玫瑰花,求這100天的日利潤(rùn)(單位:元)的平均數(shù);

若花店一天購(gòu)進(jìn)17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤(rùn)不少于75元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018海南高三階段性測(cè)試(二模)如圖,在直三棱柱中, , ,點(diǎn)的中點(diǎn),點(diǎn)上一動(dòng)點(diǎn).

I)是否存在一點(diǎn),使得線段平面?若存在,指出點(diǎn)的位置,若不存在,請(qǐng)說(shuō)明理由.

II)若點(diǎn)的中點(diǎn)且,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】 (本小題滿分12分)為了調(diào)查甲、乙兩個(gè)交通站的車流量,隨機(jī)選取了14天,統(tǒng)計(jì)每天上午800~1200間各自的車流量(單位:百輛),得如圖所示的統(tǒng)計(jì)圖,試求:

(1)甲、乙兩個(gè)交通站的車流量的極差分別是多少?

(2)甲交通站的車流量在間的頻率是多少?

(3)根據(jù)該莖葉圖結(jié)合所學(xué)統(tǒng)計(jì)知識(shí)分析甲、乙兩個(gè)交通站哪個(gè)站更繁忙?并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案