【題目】某公司為了應對金融危機,決定適當進行裁員,已知這家公司現(xiàn)有職工人(,且10的整數(shù)倍),每人每年可創(chuàng)利100千元,據(jù)測算,在經(jīng)營條件不變的前的提下,若裁員人數(shù)不超過現(xiàn)有人數(shù)的30%,則每裁員1人,留崗員工每人每年就能多創(chuàng)利1千元(即若裁員人,留崗員工可多創(chuàng)利潤千元);若裁員人數(shù)超過現(xiàn)有人數(shù)的30%,則每裁員1人,留崗員工每人每年就能多創(chuàng)利2千元(即若裁員人,留崗員工可多創(chuàng)利潤千元),為保證公司的正常運轉,留崗的員工數(shù)不得少于現(xiàn)有員工人數(shù)的50%,為了保障被裁員工的生活,公司要付給被裁員工每人每年20千元的生活費.

1)設公司裁員人數(shù)為,寫出公司獲得的經(jīng)濟效益(千元)關于的函數(shù)(經(jīng)濟效益=在職人員創(chuàng)利總額被裁員工生活費);

2)為了獲得最大的經(jīng)濟效益,該公司應裁員多少人?

【答案】1;(2.

【解析】

1)根據(jù)題意,欲求獲得最大的經(jīng)濟效益時,該公司的裁員人數(shù).分情況求出兩種情況下函數(shù)的解析式,列出分段函數(shù);

2)分別求出兩段段函數(shù)的最大值,然后進行比較,最后得出裁員的最佳人數(shù).

1)設公司裁員人數(shù)為,獲得的經(jīng)濟效益為千元,

則由題意得當時,,

時,,

所以

2)當時,對稱軸

①當,即,

所以時,取得最大值為,

②當時,對稱軸,

,即,

的取值小于

,即時,取得最大值為,

顯然,都有

時,

綜上所述:當時,取得最大值,

所以該公司應裁員.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)當時,求函數(shù)的單調區(qū)間;

(2)若函數(shù)的值域為,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列的前1,37,)組成集合,從集合中任取)個數(shù),其所有可能的個數(shù)的乘積的和為(若只取一個數(shù),規(guī)定乘積為此數(shù)本身),記.例如:當時,,,;時,,,,.

1)當時,求,,的值;

2)證明:時集合時集合(為以示區(qū)別,用表示)有關系式);

3)試求(用表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本,當年產(chǎn)量不足80千件時,(萬元);當年產(chǎn)量不小于80千件時,(萬元),每件售價為0.05萬元,通過市場分析,該廠生產(chǎn)的商品能全部售完.

1)寫出年利潤(萬元)關于年產(chǎn)量(千件)的函數(shù)解析式;

2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合由滿足下列兩個條件的數(shù)列構成:②存在實數(shù)使得對任意正整數(shù)都成立.

(1)現(xiàn)在給出只有5項的有限數(shù)列試判斷數(shù)列是否為集合的元素;

(2)設數(shù)列的前項和為若對任意正整數(shù)均在直線上,證明:數(shù)列并寫出實數(shù)的取值范圍;

(3)設數(shù)列若數(shù)列沒有最大值,求證:數(shù)列一定是單調遞增數(shù)列。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點F1、F2為雙曲線b0)的左、右焦點,過F2作垂直于x軸的直線,在x軸上方交雙曲線C于點M,且∠MF1F2=30°,圓O的方程是x2+y2=b2

1)求雙曲線C的方程;

2)過雙曲線C上任意一點P作該雙曲線兩條漸近線的垂線,垂足分別為P1、P2,求的值;

3)過圓O上任意一點Q作圓O的切線l交雙曲線CAB兩點,AB中點為M,求證:|AB|=2|OM|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】曲線的右焦點分別為,短袖長為,點在曲線上,直線上,且.

1)求曲線的標準方程;

2)試通過計算判斷直線與曲線公共點的個數(shù).

3)若點在都在以線段為直徑的圓上,且,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若正項數(shù)列滿足:,則稱此數(shù)列為“比差等數(shù)列”.

1)試寫出一個“比差等數(shù)列”的前項;

2)設數(shù)列是一個“比差等數(shù)列”,問是否存在最小值,如存在,求出最小值;如不存在,請說明理由;

3)已知數(shù)列是一個“比差等數(shù)列”,為其前項的和,試證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù)、,如果存在實數(shù)、使得,那么稱、的生成函數(shù).

1)若,,,則是否分別為的生成函數(shù)?并說明理由;

2)設,,,生成函數(shù),若不等式上有解,求實數(shù)的取值范圍;

3)設,,,生成函數(shù)圖象的最低點坐標為,若對于任意正實數(shù)、,試問是否存在最大的常數(shù),使恒成立?如果存在,求出這個的值;如果不存在,請說明理由.

查看答案和解析>>

同步練習冊答案