函數(shù)f(x)對(duì)于任意的x∈R都有f(π+x)=f(x)和f(-x)=f(x)成立,由此函數(shù)可以是


  1. A.
    f(x)=sin2x
  2. B.
    f(x)=2sinxcosx
  3. C.
    f(x)=sin2x+cos2x
  4. D.
    數(shù)學(xué)公式
A
分析:由題意確定函數(shù)f(x)的周期為π,是偶函數(shù),然后求出A的周期或奇偶性判定正誤;求出B,求出C的奇偶性判定正誤;求出D周期判斷正誤即可.
解答:對(duì)于A:,最小正周期為π且為偶函數(shù).正確;
B:f(x)=2sinxcosx=sin2x,不是偶函數(shù),錯(cuò)誤;
C:f(x)=sin2x+cos2x不是偶函數(shù),錯(cuò)誤;
D:=-cosx,周期不是π錯(cuò)誤;
故選A.
點(diǎn)評(píng):本題考查三角函數(shù)的周期性及其求法,函數(shù)奇偶性的判斷,考查計(jì)算推理能力,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中:
①若定義在R上的函數(shù)f(x)滿足f(x+2)=-f(x-1),則6為函數(shù)f(x)的周期;
②若對(duì)于任意x∈(1,3),不等式x2-ax+2<0恒成立,則a>
11
3

③定義:“若函數(shù)f(x)對(duì)于任意x∈R,都存在正常數(shù)M,使|f(x)|≤M|x|恒成立,則稱函數(shù)f(x)為有界泛函.”由該定義可知,函數(shù)f(x)=x2+1為有界泛函;
④對(duì)于函數(shù)f(x)=
x-1
x+1
,設(shè)f2(x)=f[f(x)],f3(x)=f[f2(x)],…,fn+1(x)=f[fn(x)](n∈N*且n≥2),令集合M={x|f2009(x)=x,x∈R},則集合M為空集.
正確的個(gè)數(shù)為(  )
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)對(duì)于任意的x都有f(x+2)=f(x+1)-f(x)且f(1)=lg3-lg2,f(2)=lg3+lg5,則f(2010)=
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義域在R上的函數(shù)f(x)對(duì)于任意的x,y有f(x+y)=f(x)+f(y)成立,且f(2)=3,當(dāng)x>0時(shí),f(x)>0.
(1)判斷并證明函數(shù)f(x)的單調(diào)性和奇偶性;
(2)解不等式:f(|x-5|)-6<f(|2x+3|).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)對(duì)于任意x,y∈R,都有f(x+y)=f(x)+f(y).且f( 1 )=
1
9
,給出如下命題:
①f(0)=0;②對(duì)于任意的x,都有f(2x)=2f(x);③f(x)是奇函數(shù);④對(duì)任意的x1<x2,都有f(x1)<f(x2);⑤函數(shù)f(x)的值域也是R.你認(rèn)為正確命題的序號(hào)有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)對(duì)于任意的x∈R,導(dǎo)函數(shù)f′(x)都存在,且滿足
1-x
f′(x)
≤0
,則必有( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案