【題目】對正整數(shù)n,記In={1,2,3…,n},Pn={ |m∈In , k∈In}.
(1)求集合P7中元素的個數(shù);
(2)若Pn的子集A中任意兩個元素之和不是整數(shù)的平方,則稱A為“稀疏集”.求n的最大值,使Pn能分成兩個不相交的稀疏集的并集.

【答案】
(1)解:對于集合P7,有n=7.

當(dāng)k=1時,m=1,2,3…,7,Pn={1,2,3…,7},7個數(shù),

當(dāng)k=2時,m=1,2,3…,7,Pn對應(yīng)有7個數(shù),

當(dāng)k=3時,m=1,2,3…,7,Pn對應(yīng)有7個數(shù),

當(dāng)k=4時,Pn={ |m∈In,k∈In}=Pn={ ,1, ,2, ,3, }中有3個數(shù)(1,2,3)

與k=1時Pn中的數(shù)重復(fù),

當(dāng)k=5時,m=1,2,3…,7,Pn對應(yīng)有7個數(shù),

當(dāng)k=6時,m=1,2,3…,7,Pn對應(yīng)有7個數(shù),

當(dāng)k=7時,m=1,2,3…,7,Pn對應(yīng)有7個數(shù),

由此求得集合P7中元素的個數(shù)為 7×7﹣3=46


(2)解:先證當(dāng)n≥15時,Pn不能分成兩個不相交的稀疏集的并集.假設(shè)當(dāng)n≥15時,

Pn可以分成兩個不相交的稀疏集的并集,設(shè)A和B為兩個不相交的稀疏集,使A∪B=PnIn

不妨設(shè)1∈A,則由于1+3=22,∴3A,即3∈B.同理可得,6∈A,10∈B.又推出15∈A,

但1+15=42,這與A為稀疏集相矛盾.

再證P14滿足要求.當(dāng)k=1時,P14={ |m∈I14,k∈I14}=I14,可以分成2個稀疏集的并集.

事實上,只要取A1={1,2,4,6,9,11,13},B1={3,5,7,8,10,12,14},

則A1和B1都是稀疏集,且A1∪B1=I14

當(dāng)k=4時,集合{ |m∈I14}中,除整數(shù)外,剩下的數(shù)組成集合{ , ,…, },

可以分為下列3個稀疏集的并:

A2={ , },B2={ , }.

當(dāng)k=9時,集合{ |m∈I14}中,除整數(shù)外,剩下的數(shù)組成集合{ , , , ,…, },

可以分為下列3個稀疏集的并:

A3={ , , , },B3={ , , , }.

最后,集合C═{ |m∈I14,k∈I14,且k≠1,4,9}中的數(shù)的分母都是無理數(shù),

它與Pn中的任何其他數(shù)之和都不是整數(shù),

因此,令A(yù)=A1∪A2∪A3∪C,B=B1∪B2∪B3,則A和B是不相交的稀疏集,且A∪B=P14

綜上可得,n的最大值為14


【解析】(1)對于集合P7 , 有n=7.當(dāng)k=4時,根據(jù)Pn中有3個數(shù)與In={1,2,3…,n}中的數(shù)重復(fù),由此求得集合P7中元素的個數(shù).(2)先用反證法證明證當(dāng)n≥15時,Pn不能分成兩個不相交的稀疏集的并集,再證P14滿足要求,從而求得n的最大值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】李明在10場籃球比賽中的投籃情況統(tǒng)計如下(假設(shè)各場比賽相互獨(dú)立);

場次

投籃次數(shù)

命中次數(shù)

場次

投籃次數(shù)

命中次數(shù)

主場1

22

12

客場1

18

8

主場2

15

12

客場2

13

12

主場3

12

8

客場3

21

7

主場4

23

8

客場4

18

15

主場5

24

20

客場5

25

12


(1)從上述比賽中隨機(jī)選擇一場,求李明在該場比賽中投籃命中率超過0.6的概率;
(2)從上述比賽中隨機(jī)選擇一個主場和一個客場,求李明的投籃命中率一場超過0.6,一場不超過0.6的概率;
(3)記 是表中10個命中次數(shù)的平均數(shù),從上述比賽中隨機(jī)選擇一場,記X為李明在這場比賽中的命中次數(shù),比較EX與 的大。ㄖ恍鑼懗鼋Y(jié)論).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,如果輸出S=3,那么判斷框內(nèi)應(yīng)填入的條件是(

A.k≤6
B.k≤7
C.k≤8
D.k≤9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場舉行的“三色球”購物摸獎活動規(guī)定:在一次摸獎中,摸獎?wù)呦葟难b有3個紅球與4個白球的袋中任意摸出3個球,再從裝有1個藍(lán)球與2個白球的袋中任意摸出1個球,根據(jù)摸出4個球中紅球與藍(lán)球的個數(shù),設(shè)一、二、三等獎如下:

獎級

摸出紅、藍(lán)球個數(shù)

獲獎金額

一等獎

3紅1藍(lán)

200元

二等獎

3紅0藍(lán)

50元

三等獎

2紅1藍(lán)

10元

其余情況無獎且每次摸獎最多只能獲得一個獎級.
(1)求一次摸獎恰好摸到1個紅球的概率;
(2)求摸獎?wù)咴谝淮蚊勚蝎@獎金額x的分布列與期望E(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三角形ABC中,角A、B、C所對邊分別為a,b,c,且

(1)若cosA=,求sinC的值;

(2)若b=,a=3c,求三角形ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)△ABC,P0是邊AB上一定點(diǎn),滿足 ,且對于邊AB上任一點(diǎn)P,恒有 則(
A.∠ABC=90°
B.∠BAC=90°
C.AB=AC
D.AC=BC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)z=kx+y,其中實數(shù)x,y滿足 ,若z的最大值為12,則實數(shù)k=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四面體A﹣BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2 .M是AD的中點(diǎn),P是BM的中點(diǎn),點(diǎn)Q在線段AC上,且AQ=3QC.

(1)證明:PQ∥平面BCD;
(2)若二面角C﹣BM﹣D的大小為60°,求∠BDC的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)舉行了一次“環(huán)保知識競賽”活動.為了了解本次競賽學(xué)生成績情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為n)進(jìn)行統(tǒng)計.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).

(1)求樣本容量n和頻率分布直方圖中x、y的值;

(2)根據(jù)樣本直方圖估計所取樣本的中位數(shù)及平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表).

查看答案和解析>>

同步練習(xí)冊答案