如圖,四棱錐的底面是正方形,側(cè)棱底面,過垂直點,作垂直點,平面點,且,.

(1)設(shè)點上任一點,試求的最小值;
(2)求證:、在以為直徑的圓上;
(3)求平面與平面所成的銳二面角的余弦值.
(1);(2)詳見解析;(3).

試題分析:(1)將側(cè)面和側(cè)面沿著展開至同一平面上,利用、三點共線結(jié)合余弦定理求出的最小值,即線段的長度;(2)證平面,從而得到,同理得到,進(jìn)而證明、在以為直徑的圓上;(3)方法一是建立以點為坐標(biāo)原點,分別以、所在的直線為、軸的空間直角坐標(biāo)系,利用空間向量法求平面與平面所成的銳二面角的余弦值;方法二是延長使得它們相交,找出二面角的棱,然后利用三垂線法找出平面與平面所成的銳二面角的平面角,利用直角三角函數(shù)來求相應(yīng)角的余弦值.
試題解析:(1)將側(cè)面繞側(cè)棱旋轉(zhuǎn)到與側(cè)面在同一平面內(nèi),如下圖示,

則當(dāng)、、三點共線時,取最小值,這時,的最小值即線段的長,
設(shè),則,
中,,
在三角形中,有余弦定理得:
,
,
(2)底面,,又
平面,又平面,,
平面,
平面,,
同理,、在以為直徑的圓上;
(3)方法一:如圖,以為原點,分別以、所在的直線為、、軸,建立空間直角坐標(biāo)系如下圖示,則,,由(1)可得,,平面,
為平面的一個法向量,
為平面的一個法向量,
設(shè)平面與平面所成的銳二面角的平面角為,
,
平面與平面所成的銳二面角的余弦值;
方法二: 由可知,故,
,
,
設(shè)平面平面平面,,
,,
,平面,又平面
,,
為平面與平面所成的銳二面角的一個平面角,

,
平面與平面所成的銳二面角的余弦值為.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直三棱柱中,
。M、N分別是AC和BB1的中點。
(1)求二面角的大小。
(2)證明:在AB上存在一個點Q,使得平面⊥平面,   
并求出的長度。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(理)已知直三棱柱中,,是棱的中點.如圖所示.
 
(1)求證:平面;
(2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,幾何體中,為邊長為的正方形,為直角梯形,,,,,

(1)求異面直線所成角的大小;
(2)求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐的底面為正方形,側(cè)面底面為等腰直角三角形,且,分別為底邊和側(cè)棱的中點.

(1)求證:∥平面;
(2)求證:平面;
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,三棱錐中,,,,點在平面內(nèi)的射影恰為的重心,M為側(cè)棱上一動點.

(1)求證:平面平面;
(2)當(dāng)M為的中點時,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐S-ABCD中,SD⊥底面ABCD,底面ABCD是矩形,SD=AD=AB,E是SA的中點.

(1)求證:平面BED⊥平面SAB.
(2)求直線SA與平面BED所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在底面邊長為1,側(cè)棱長為2的正四棱柱中,P是側(cè)棱上的一點,.
(1)試確定m,使直線AP與平面BDD1B1所成角為60º;
(2)在線段上是否存在一個定點,使得對任意的m,
⊥AP,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知實數(shù)x,y,z滿足,則的最小值是(    )
A.
B.3
C.6
D.9

查看答案和解析>>

同步練習(xí)冊答案