若圓x2+y2=9上每個點的橫坐標不變,縱坐標縮短為原來的,則所得曲線的方程是(    )
A.+="1" B.+=1
C.+y2="1"D.+=1
C
圓橫坐標不變,縱坐標縮短為原來的后,所得曲線為橢圓,且a=3,b=,焦點在x軸上.∴所得曲線的方程為+y2=1.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)圓過點P(0,2), 且在軸上截得的弦RG的長為4.
(1)求圓心的軌跡E的方程;                                                                                                        
(2)過點(0,1),作軌跡的兩條互相垂直的弦、,設(shè)、 的中點分別為,試判斷直線是否過定點?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在直角坐標平面中,的兩個頂點分別的坐標為,,平面內(nèi)兩點同時滿足下列條件:
;②;③
(1)求的頂點的軌跡方程;
(2)過點的直線與(1)中軌跡交于兩點,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在直角坐標平面中,的兩個頂點的坐標分別為,平面內(nèi)兩點同時滿足下列條件:
;②;③
(1)求的頂點的軌跡方程;
(2)過點的直線與(1)中軌跡交于兩點,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若α∈R,則方程x2+4y2sinα=1所表示的曲線一定不是(    )
A.直線B.圓C.拋物線D.雙曲線

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分15分)拋物線的頂點在原點,焦點在射線x-y+1=0
(1)求拋物線的標準方程
(2)過(1)中拋物線的焦點F作動弦AB,過A、B兩點分別作拋物線的切線,設(shè)其交點為M,求點M的軌跡方程,并求出的值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知兩點M(-2,0)、N(2,0),點P為坐標平面內(nèi)的動點,滿足||||+ ·=0,求動點P(x,y)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

直線與雙曲線的右支交于不同的兩點
(1)求實數(shù)的取值范圍;
(2)是否存在實數(shù),使得以線段為直徑的圓經(jīng)過雙曲線的右焦點?若存在,求出的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若直線與雙曲線沒有公共點,則實數(shù)的取值范圍是(      )
A.B.C.D.

查看答案和解析>>

同步練習冊答案