【題目】下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞增的函數(shù)是( )
A.y=log2(x+3)
B.y=2|x|+1
C.y=﹣x2﹣1
D.y=3﹣|x|
【答案】B
【解析】解:對于A:函數(shù)不是偶函數(shù),不合題意;
對于B:函數(shù)是偶函數(shù),且x>0時,y=2x+1遞增;符合題意;
對于C:函數(shù)是偶函數(shù),在(0,+∞)遞減,不合題意;
對于D:函數(shù)是偶函數(shù),在(0,+∞)遞減,不合題意;
故選:B.
【考點精析】本題主要考查了函數(shù)單調(diào)性的判斷方法和函數(shù)的奇偶性的相關(guān)知識點,需要掌握單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大。虎圩鞑畋容^或作商比較;偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點對稱才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)=ax2+1(x∈R)的圖象過點A(﹣1,3).
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)證明f(x)在(﹣∞,0)上是減函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中假命題是( )
A.x0∈R,ln x0<0
B.x∈(-∞,0),ex>x+1
C.x>0,5x>3x
D.x0∈(0,+∞),x0<sin x0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】知函數(shù)f(x)是R上的偶函數(shù),g(x)是R上的奇函數(shù),且g(x)=f(x﹣1),若f(﹣2)=2,則f(2018)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|x2﹣3x﹣10<0},B={x|lg(5﹣x)<1},則A∪B=( )
A.(﹣2,5)B.(﹣5,5)C.(﹣∞,5)D.(﹣5,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=log3x+x﹣3的零點所在的區(qū)間是( )
A.(0,1)
B.(1,2)
C.(2,3)
D.(3,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知α,β是兩個相交平面,其中lα,則( 。
A.β內(nèi)一定能找到與l平行的直線
B.β內(nèi)一定能找到與l垂直的直線
C.若β內(nèi)有一條直線與l平行,則該直線與α平行
D.若β內(nèi)有無數(shù)條直線與l垂直,則β與α垂直
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)隨機變量ξ服從正態(tài)分布N(2,σ2),若P(ξ>c)=a,則(ξ>4﹣c)等于( )
A.a
B.1﹣a
C.2a
D.1﹣2a
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com