【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),圓的方程為.以原點為極點,軸正半軸為極軸建立極坐標系.

(Ⅰ)求直線及圓的極坐標方程;

(Ⅱ)若直線與圓交于兩點,求的值.

【答案】(1)見解析;(2).

【解析】分析:()由直線的參數(shù)方程得普通方程為,利用可得直線及圓的極坐標方程;()將直線,與圓聯(lián)立得,

不妨記點A對應的極角為,點B對應的極角為,且,于是.

于是,.

詳解(Ⅰ)由直線的參數(shù)方程得,其普通方程為

∴直線的極坐標方程為.

又∵圓的方程為,

代入并化簡得

∴圓的極坐標方程為.

(Ⅱ)將直線,

與圓聯(lián)立,得,

整理得,∴.

不妨記點A對應的極角為,點B對應的極角為,且.

于是,.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】5名男生3名女生參加升旗儀式:

(1)站兩橫排,3名女生站前排,5名男生站后排有多少種站法?

(2)站兩縱列,每列4人,每列都有女生且女生站在男生前面,有多少種排列方法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸出的,則判斷框內可以填入

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲乙兩個班級均為40人,進行一門考試后,按學生考試成績及格與不及格進行統(tǒng)計,甲班及格人數(shù)為36人,乙班及格人數(shù)為24人.

(1)根據(jù)以上數(shù)據(jù)建立一個2×2的列聯(lián)表;

(2)試判斷能否有99.5%的把握認為“考試成績與班級有關”?參考公式: ;n=a+b+c+d

P(>k)

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,,分別是其左、右焦點,且過點.

(1)求橢圓的標準方程;

(2)若在直線上任取一點,從點的外接圓引一條切線,切點為.問是否存在點,恒有?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是亞太區(qū)域國家與地區(qū)加強多邊經(jīng)濟聯(lián)系、交流與合作的重要組織,其宗旨和目標是“相互依存、共同利益,堅持開放性多邊貿易體制和減少區(qū)域間貿易壁壘.”2017年會議于11月10日至11日在越南峴港舉行.某研究機構為了了解各年齡層對會議的關注程度,隨機選取了100名年齡在內的市民進行了調查,并將結果繪制成如圖所示的頻率分布直方圖(分組區(qū)間分別為,,).

(1)求選取的市民年齡在內的人數(shù);

(2)若從第3,4組用分層抽樣的方法選取5名市民進行座談,再從中選取2人參與會議的宣傳活動,求參與宣傳活動的市民中至少有一人的年齡在內的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知變量之間的線性回歸方程為,且變量之間的一組相關數(shù)據(jù)如表所示,則下列說法錯誤的是( 。

x

6

8

10

12

y

6

m

3

2

A. 變量之間呈現(xiàn)負相關關系

B. 的值等于5

C. 變量之間的相關系數(shù)

D. 由表格數(shù)據(jù)知,該回歸直線必過點(9,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某省2016年高中數(shù)學學業(yè)水平測試的原始成績采用百分制,發(fā)布成績使用等級制.各等制劃分標準為:85分及以上,記為等;分數(shù)在內,記為等;分數(shù)在內,記為等;60分以下,記為等.同時認定為合格, 為不合格.已知甲,乙兩所學校學生的原始成績均分布在內,為了比較兩校學生的成績,分別抽取50名學生的原始成績作為樣本進行統(tǒng)計,按照的分組作出甲校的樣本頻率分布直方圖如圖1所示,乙校的樣本中等級為的所有數(shù)據(jù)莖葉圖如圖2所示.

(Ⅰ)求圖1中的值,并根據(jù)樣本數(shù)據(jù)比較甲乙兩校的合格率;

(Ⅱ)在選取的樣本中,從甲,乙兩校等級的學生中隨機抽取3名學生進行調研,用表示所抽取的3名學生中甲校的學生人數(shù),求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,垂直于所在的平面,的直徑,是弧上的一個動點(不與端點重合),上一點,且是線段上的一個動點(不與端點重合).

(1)求證:平面;

(2)若是弧的中點,是銳角,且三棱錐的體積為,求的值.

查看答案和解析>>

同步練習冊答案