某高校為了了解參加該校自主招生考試的男女生數(shù)學(xué)成績的情況,按照分層抽樣分別抽取了10名男生和5名女生作為樣本,他們數(shù)學(xué)成績的莖葉圖如圖所示,其中莖為十位數(shù),葉為個位數(shù).
(Ⅰ)若該班男女生平均分數(shù)相等,求x的值;
(Ⅱ)若規(guī)定85分以上為優(yōu)秀,在該5名女生中隨機抽取2名,求至少有一人數(shù)學(xué)成績優(yōu)秀的概率.
考點:古典概型及其概率計算公式,頻率分布直方圖
專題:概率與統(tǒng)計
分析:(I)根據(jù)平均數(shù)公式計算可得答案;
(II)利用組合數(shù)公式分別計算從5人中任意抽取2名學(xué)生的取法種數(shù)與至少一名數(shù)學(xué)成績在85分以上的取法種數(shù),代入古典概型概率公式計算.
解答: 解:(Ⅰ)
.
x女生
=
62+76+84+87+94
5
=
.
x男生
=
60+62+64+79+88+80+x+90+91+92+98
10
⇒x=6;
(Ⅱ)女生中85分以上的有2名學(xué)生,
從5人中任意抽取2名學(xué)生有
C
2
5
=10種方法,
至少有一人數(shù)學(xué)成績在85分以上的抽法有
C
2
2
+
C
1
2
×
C
1
3
=7種,
∴至少有一人數(shù)學(xué)成績優(yōu)秀的概率為
7
10
點評:本題考查了由莖葉圖求數(shù)據(jù)的平均數(shù)及古典概型的概率計算,熟練掌握莖葉圖是解答問題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,圓O是等邊三角形ABC的外接圓,點P在劣弧
BC
上,在CP的延長線上取PQ=PB.
(Ⅰ)求證:CQ=AP;
(Ⅱ)當點P是劣弧
BC
的中點時,求S△ABC與S△BPQ的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α為銳角,且tanα=
2
-1.若
m
=(4x,1),
n
=(cos2(α+
π
8
),tan2α),函數(shù)f(x)=
m
n

(Ⅰ)求函數(shù)f(x)的表達式;
(Ⅱ)若數(shù)列{an}的首項a1=1,an+1=f(an),求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,b>0,求證:
a+b
2
2ab
a+b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明函數(shù)y=-120x+3在(-∞,+∞)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列|an|的前n項和為Sn,且a1=4,Sn=nan-
n(n-1)
2
(n∈N*),數(shù)列|bn|滿足b1=4,且bn=bn-12-(n-2)bn-1-2(n≥2,n∈N*
(1)求數(shù)列|an|的通項公式;
(2)求證:bn>an(n≥2,n∈N*);
(3)求證:(1+
1
b2b3
)(1+
1
b3b4
)(1+
1
b4b5
)…(1+
1
bnbn+1
)<
3e
(n≥2,n∈N*)(注:e是自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

多面體EABCDF中,底面ABCD是邊長為2的正方形,EA⊥底面ABCD,F(xiàn)D∥EA,且FD=1,EA=2.
(1)求多面體EABCDF的體積;
(2)若FG⊥EC于G,求證:FG∥面ABCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)若全集U=R,集合A={x|x≥1}∪{x|x≤0},則∁UA=(0,1);
(2)命題“?x∈R,x2+x+1<0”的否定是“?x∈R,x2+x+1≥0”;
(3)已知△ABC的周長等于18,B、C兩點坐標分別為(0,4),(0,-4),A點的軌跡方程
x2
9
+
y2
25
=1;
(4)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的焦距為2c,以o為圓心,a為半徑作圓M,若過點P(
a2
c
,0)作圓M的兩條切線相互垂直,則橢圓的離心率為
2
2

以上命題正確的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0),過其右焦點且垂直于實軸的直線與雙曲線交于M,N 兩點,O為坐標原點.若OM⊥ON,則雙曲線的離心率為
 

查看答案和解析>>

同步練習冊答案