(本題滿分14分)

已知橢圓的左右焦點為,拋物線C:以F2為焦點且與橢圓相交于點M,直線F1M與拋物線C相切。

(Ⅰ)求拋物線C的方程和點M的坐標;

(Ⅱ)過F2作拋物線C的兩條互相垂直的弦AB、DE,設(shè)弦AB、DE的中點分別為F、N,求證直線FN恒過定點;

 

【答案】

解:(Ⅰ)由橢圓方程得半焦距         …………1分

 所以橢圓焦點為                     …………2分

又拋物線C的焦點為   ……3分

設(shè),直線的方程為……4分

代入拋物線C得

與拋物線C相切,

       …………7分

(Ⅱ)設(shè)的方程為 代入,得,…8分

設(shè),則  ………9分

,     ………10分

所以,將換成       …………12分

由兩點式得的方程為                …………13分

,所以直線恒過定點          …………14分

 

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(本題滿分14分
A.選修4-4:極坐標與參數(shù)方程在極坐標系中,直線l 的極坐標方程為θ=
π
3
(ρ∈R ),以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,曲線C的參數(shù)方程為
x=2cosα
y=1+cos2α
(α 參數(shù)).求直線l 和曲線C的交點P的直角坐標.
B.選修4-5:不等式選講
設(shè)實數(shù)x,y,z 滿足x+y+2z=6,求x2+y2+z2 的最小值,并求此時x,y,z 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AEEBBC=2,上的點,且BF⊥平面ACE

(1)求證:AEBE;(2)求三棱錐DAEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江蘇省高三上學期期中考試數(shù)學 題型:解答題

(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}

(Ⅰ)若AB=[0,3],求實數(shù)m的值

(Ⅱ)若ACRB,求實數(shù)m的取值范圍

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年福建省高三上學期第三次月考理科數(shù)學卷 題型:解答題

(本題滿分14分)

已知點是⊙上的任意一點,過垂直軸于,動點滿足。

(1)求動點的軌跡方程; 

(2)已知點,在動點的軌跡上是否存在兩個不重合的兩點、,使 (O是坐標原點),若存在,求出直線的方程,若不存在,請說明理由。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆江西省高一第二學期入學考試數(shù)學 題型:解答題

(本題滿分14分)已知函數(shù).

(1)求函數(shù)的定義域;

(2)判斷的奇偶性;

(3)方程是否有根?如果有根,請求出一個長度為的區(qū)間,使

;如果沒有,請說明理由?(注:區(qū)間的長度為).

 

查看答案和解析>>

同步練習冊答案