對于集合P和Q,定義運算P-Q={x|x∈P且x∉Q}.若P={x|log2x<1},Q={x||x-2|<1},則P-Q=
 
考點:絕對值不等式的解法,指、對數(shù)不等式的解法
專題:不等式的解法及應(yīng)用
分析:解對數(shù)不等式求得P、解絕對值不等式求得Q,再根據(jù)新定義求得P-Q.
解答: 解:由于P={x|log2x<1}={x|0<x<2},Q={x||x-2|<1}={x|-1<x-2<1}={x|1<x<3},
則P-Q={x|0<x≤1},
故答案為:{x|0<x≤1}.
點評:本題主要考查對數(shù)不等式、絕對值不等式的解法,新定義,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

冪函數(shù)f(x)的圖象過點(3,
427
),則f(x)的解析式是( 。
A、f(x)=
33x
B、f(x)=
x32
C、f(x)=
3x4
D、f(x)=
4x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)畫出不等式組表示的平面區(qū)域
x+2y+4<0
x-y+1≤0

(2)解不等式x2-2x-3≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=4x-
1
x+2

(1)用定義證明f(x)在(-2,+∞)上是增函數(shù);
(2)求f(x)的零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)不等式|
2-x
2x+1
|≤1的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將一張坐標(biāo)紙折疊一次,使得點(0,2)與點(4,0)重合,點(7,3)與點(m,n)重合,則m+n=( 。
A、
34
5
B、
36
5
C、
28
3
D、
32
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l:y=k(x-
2
)與曲線x2-y2=1(x>0)相交于A、B兩點,則直線l傾斜角的取值范圍是( 。
A、{0,π)
B、(
π
4
,
π
2
)∪(
π
2
,
4
C、[0,
π
2
)∪(
π
2
,π)
D、(
π
4
,
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若變量x,y滿足約束條件
x≤4
y≤4
x+y≥4
,則目標(biāo)函數(shù)z=x+2y的最小值是( 。
A、6B、5C、2D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a為常數(shù),函數(shù)f(x)=x2-4x+3,若f(x+a)為偶函數(shù),則a=
 

查看答案和解析>>

同步練習(xí)冊答案