已知橢圓的方程為=1,焦點(diǎn)在x軸上,則m的范圍是( 。

A.-4≤m≤4

B.-4<m<4

C.m>4或m<-4

D.0<m<4或-4<m<0

解析:由0<m2<16得0<|m|<4,即-4<m<0或0<m<4.故選D.

答案:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的方程為=1,焦點(diǎn)在x軸上,則m的范圍是(  )

A.-4≤m≤4且m≠0

B.-4<m<4且m≠0

C.m>4或m<-4

D.0<m<4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的方程為=1,焦點(diǎn)在x軸上,則m的范圍是( 。

A.-4≤m≤4

B.-4<m<4

C.m>4或m<-4

D.0<m<4或-4<m<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的方程為=1,焦點(diǎn)在x軸上,則m的范圍是

A.-4≤m≤4且m≠0                            B.-4<m<4且m≠0

C.m>4或m<-4                                 D.0<m<4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的方程為=1(a>b>0),過其左焦點(diǎn)F(-1,0)、斜率為1的直線交橢圓于P、Q兩點(diǎn).

(1)若與a=(-3,1)共線,求橢圓的方程;

(2)若在左準(zhǔn)線上存在點(diǎn)R,使△PQR為正三角形,求橢圓的離心率e.

(文)已知函數(shù)f(x)=2x(x>0),g(x)=.

(1)求F(x)=2f(x)+[g(x)]2的最小值;

(2)在x軸正半軸上有一動(dòng)點(diǎn)C(x,0),過C作x軸的垂線分別與f(x)、g(x)的圖象交于點(diǎn)A、B,試將△AOC與△BOC的面積的平方差表示為x的函數(shù)h(x),并判斷h(x)是否存在極值,若存在,求出極值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案