已知函數(shù)f(x)=若方程f(x)=k無實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍是      .

 

(-,lg)

【解析】在同一坐標(biāo)系內(nèi)作出函數(shù)y=f(x)y=k的圖象,如圖所示,若兩函數(shù)圖象無交點(diǎn),k<lg.

 

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測試選修4-4坐標(biāo)系與參數(shù)方程練習(xí)卷(解析版) 題型:解答題

在直角坐標(biāo)系xOy中,以O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.圓C1,直線C2的極坐標(biāo)方程分別為ρ4sin θ,ρcos 2.

(1)C1C2交點(diǎn)的極坐標(biāo);

(2)設(shè)PC1的圓心,QC1C2交點(diǎn)連線的中點(diǎn).已知直線PQ的參數(shù)方程為 (tR為參數(shù)),求a,b的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)(四)第二章第一節(jié)練習(xí)卷(解析版) 題型:填空題

已知兩個(gè)函數(shù)f(x)g(x)的定義域和值域都是集合{1,2,3},其函數(shù)對應(yīng)關(guān)系如下表:

則方程g(f(x))=x的解集為____________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)(六)第二章第三節(jié)練習(xí)卷(解析版) 題型:選擇題

設(shè)f(x)是連續(xù)的偶函數(shù),且當(dāng)x>0時(shí)是單調(diào)函數(shù),則滿足f(x)=f()的所有x之和為(  )

(A)-3   (B)3   (C)-8   (D)8

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)(六)第二章第三節(jié)練習(xí)卷(解析版) 題型:選擇題

設(shè)函數(shù)f(x)g(x)分別是R上的偶函數(shù)和奇函數(shù),則下列結(jié)論恒成立的是(  )

(A)f(x)+|g(x)|是偶函數(shù)

(B)f(x)-|g(x)|是奇函數(shù)

(C)|f(x)|+g(x)是偶函數(shù)

(D)|f(x)|-g(x)是奇函數(shù)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)(八)第二章第五節(jié)練習(xí)卷(解析版) 題型:選擇題

若函數(shù)f(x)=log3(x2-2ax+5)在區(qū)間(-,1]上單調(diào)遞減,a的取值范圍是(  )

(A)[1,+) (B)(1,+)

(C)[1,3) (D)[1,3]

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)(八)第二章第五節(jié)練習(xí)卷(解析版) 題型:選擇題

函數(shù)f(x)=1+log2x,f(x)g(x)=21-x在同一直角坐標(biāo)系下的圖象大致是(  )

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)(五)第二章第二節(jié)練習(xí)卷(解析版) 題型:選擇題

函數(shù)f(x)=|x|g(x)=x(2-x)的遞增區(qū)間依次是(  )

(A)(-,0],(-,1] (B)(-,0],[1,+)

(C)[0,+),(-,1] (D)[0,+),[1,+)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)(三)第一章第三節(jié)練習(xí)卷(解析版) 題型:選擇題

下列命題中是真命題的是(  )

(A)xR,使得sinxcosx=

(B)x(-,0),2x>1

(C)xR,x2x+1

(D)x(0,),tanx>sinx

 

查看答案和解析>>

同步練習(xí)冊答案