【題目】設(shè)a>0,且a≠1,函數(shù)y=a2x+2ax-1在[-1,1]上的最大值是14,則實(shí)數(shù)a的值為________.
【答案】或3
【解析】
首先換元,設(shè),函數(shù)變?yōu)?/span>,再分和兩種情況討論的范圍,根據(jù)的范圍求二次函數(shù)的最大值,求得實(shí)數(shù)的范圍.
令t=ax(a>0,且a≠1),
則原函數(shù)化為y=f(t)=(t+1)2-2(t>0).
①當(dāng)0<a<1,x∈[-1,1]時(shí),t=ax∈,
此時(shí)f(t)在上為增函數(shù).
所以f(t)max=f=-2=14.
所以=16,解得a=- (舍去)或a=.
②當(dāng)a>1時(shí),x∈[-1,1],t=ax∈,
此時(shí)f(t)在上是增函數(shù).所以f(t)max=f(a)=(a+1)2-2=14,解得a=3或a=-5(舍去).綜上得a=或3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是矩形,平面,且,,點(diǎn)為線段的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求證:;
(Ⅲ)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的個(gè)數(shù)是( )
①設(shè)某大學(xué)的女生體重與身高具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù),用最小二乘法建立的線性回歸方程為 ,則若該大學(xué)某女生身高增加,則其體重約增加;
②關(guān)于的方程的兩根可分別作為橢圓和雙曲線的離心率;
③過定圓上一定點(diǎn)作圓的動弦,為原點(diǎn),若,則動點(diǎn)的軌跡為橢圓;
④已知是橢圓的左焦點(diǎn),設(shè)動點(diǎn)在橢圓上,若直線的斜率大于,則直線(為原點(diǎn))的斜率的取值范圍是.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若,求函數(shù)的定義域和值域;
(Ⅱ)若函數(shù)的定義域?yàn)?/span>,值域?yàn)?/span>,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在圓內(nèi)有一點(diǎn),為圓上一動點(diǎn),線段的垂直平分線與的連線交于點(diǎn).
(Ⅰ)求點(diǎn)的軌跡方程.
(Ⅱ)若動直線與點(diǎn)的軌跡交于、兩點(diǎn),且以為直徑的圓恒過坐標(biāo)原點(diǎn).問是否存在一個(gè)定圓與動直線總相切.若存在,求出該定圓的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)求經(jīng)過點(diǎn)的拋物線的標(biāo)準(zhǔn)方程;
(2)求以橢圓長軸兩個(gè)端點(diǎn)為焦點(diǎn),以該橢圓焦點(diǎn)為頂點(diǎn)的雙曲線的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是奇函數(shù).
(1)求實(shí)數(shù)的值;
(2)判斷函數(shù)的單調(diào)性,并用定義證明;
(3)當(dāng)時(shí),求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列所給4個(gè)圖象中,與所給3件事吻合最好的順序?yàn)?( )
①我離開學(xué)校不久,發(fā)現(xiàn)自己把作業(yè)本忘在教室,于是立刻返回教室里取了作業(yè)本再回家;
②我放學(xué)回家騎著車一路以常速行駛,只是在途中遇到一次交通堵塞,耽擱了一些時(shí)間;
③我放學(xué)從學(xué)校出發(fā)后,心情輕松,緩緩行進(jìn),后來為了趕時(shí)間開始加速.
A.(1)(2)(4)B.(4)(1)(2)C.(4)(1)(3)D.(4)(2)(3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)若關(guān)于的不等式在上恒成立,求的取值范圍;
(2)設(shè)函數(shù),若在上存在極值,求的取值范圍,并判斷極值的正負(fù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com