已知三棱錐,平面平面,AB=AD=1,AB⊥AD,DB=DC,DB⊥DC

(1) 求證:AB⊥平面ADC;
(2) 求三棱錐的體積;
(3) 求二面角的正切值.

(1)由,得到結(jié)論。
(2)
(3)

解析試題分析:證明:(1)


(2)
(3)過(guò)A作

即為二面角的平面角
        10分
考點(diǎn):線面垂直,棱錐體積,二面角
點(diǎn)評(píng):主要是考查了空間幾何體中線面垂直的證明以及錐體體積和二面角的平面角的求解,屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,直三棱柱中,AB=BC,,Q是AC上的點(diǎn),AB1//平面BC1Q.

(Ⅰ)確定點(diǎn)Q在AC上的位置;
(Ⅱ)若QC1與平面BB1C1C所成角的正弦值為,求二面角Q-BC1—C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖1,在直角梯形中,AD//BC, =900,BA="BC" 把ΔBAC沿折起到的位置,使得點(diǎn)在平面ADC上的正投影O恰好落在線段上,如圖2所示,點(diǎn)分別為線段PC,CD的中點(diǎn).

(I) 求證:平面OEF//平面APD;
(II)求直線CD與平面POF;
(III)在棱PC上是否存在一點(diǎn),使得到點(diǎn)P,O,C,F四點(diǎn)的距離相等?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐中,底面是直角梯形,,⊥平面SAD,點(diǎn)的中點(diǎn),且.

(1)求四棱錐的體積;
(2)求證:∥平面
(3)求直線和平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,是圓的直徑,點(diǎn)在圓上,,于點(diǎn),
平面,,
(1)證明:;
(2)求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,矩形中,⊥平面,上的點(diǎn),且⊥平面.

(1)求證:⊥平面;
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖, 平面平面, 是以為斜邊的等腰直角三角形, 分別為, , 的中點(diǎn), ,

(1) 設(shè)的中點(diǎn), 證明:平面
(2) 證明:在內(nèi)存在一點(diǎn), 使平面, 并求點(diǎn), 的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在邊長(zhǎng)為1的等邊三角形中,分別是邊上的點(diǎn),的中點(diǎn),交于點(diǎn),將沿折起,得到如圖所示的三棱錐,其中

(1) 證明://平面;
(2) 證明:平面;
(3) 當(dāng)時(shí),求三棱錐的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

三棱錐,底面為邊長(zhǎng)為的正三角形,平面平面,,上一點(diǎn),,為底面三角形中心.

(Ⅰ)求證∥面
(Ⅱ)求證:;
(Ⅲ)設(shè)中點(diǎn),求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案