已知橢圓的離心率為,橢圓的短軸端點(diǎn)與雙曲線的焦點(diǎn)重合,過(guò)點(diǎn)且不垂直于軸直線與橢圓相交于兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)求的取值范圍.
(Ⅰ);(Ⅱ) 

試題分析:(Ⅰ)根據(jù)橢圓的短軸端點(diǎn)與雙曲線的焦點(diǎn)重合,可求得.由離心率.(Ⅱ)設(shè)直線的方程為,代入橢圓方程,整理得:則點(diǎn)、的橫坐標(biāo)是該方程的兩個(gè)根.利用根與系數(shù)的關(guān)系用表示出,由此可求得的取值范圍.
試題解析:(Ⅰ)由題意知,∴,即  2分
又雙曲線的焦點(diǎn)坐標(biāo)為,,                     3分
  故橢圓的方程為                 6分
(Ⅱ)解:由題意知直線的斜率存在,設(shè)直線的方程為
得:   
得:            7分
設(shè),則     
            9分
-+=   11分
,,                           13分
   即的取值范圍是                15分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)橢圓C:過(guò)點(diǎn)(0,4),離心率為
(Ⅰ)求C的方程;(Ⅱ)求過(guò)點(diǎn)(3,0)且斜率為的直線被C所截線段的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線與雙曲線有公共焦點(diǎn),點(diǎn)是曲線在第一象限的交點(diǎn),且
(Ⅰ)求雙曲線的方程;
(Ⅱ)以雙曲線的另一焦點(diǎn)為圓心的圓與直線相切,圓.過(guò)點(diǎn)作互相垂直且分別與圓、圓相交的直線,設(shè)被圓截得的弦長(zhǎng)為,被圓截得的弦長(zhǎng)為,問(wèn):是否為定值?如果是,請(qǐng)求出這個(gè)定值;如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,焦距為,且經(jīng)過(guò)點(diǎn),直線交橢圓于不同的兩點(diǎn)A,B.
(1)求的取值范圍;,
(2)若直線不經(jīng)過(guò)點(diǎn),求證:直線的斜率互為相反數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

極坐標(biāo)系中橢圓C的方程為以極點(diǎn)為原點(diǎn),極軸為軸非負(fù)半軸,建立平面直角坐標(biāo)系,且兩坐標(biāo)系取相同的單位長(zhǎng)度.
(Ⅰ)求該橢圓的直角標(biāo)方程;若橢圓上任一點(diǎn)坐標(biāo)為,求的取值范圍;
(Ⅱ)若橢圓的兩條弦交于點(diǎn),且直線的傾斜角互補(bǔ),
求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,是雙曲線與橢圓的公共焦點(diǎn),點(diǎn)A是在第一象限的公共點(diǎn).若,則的離心率是(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知斜率為2的直線雙曲線兩點(diǎn),若點(diǎn)的中點(diǎn),則的離心率等于(   )
A.B.2C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

過(guò)拋物線的焦點(diǎn)且傾斜角為的直線與拋物線在第一、四象限分別交于兩點(diǎn),則等于(     )
A.5B.4 C.3D. 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

極坐標(biāo)系與直角坐標(biāo)系xOy有相同的長(zhǎng)度單位,以原點(diǎn)D為極點(diǎn),以x軸正半軸為極軸,曲線Cl的極坐標(biāo)方程為,曲線C2的參數(shù)方程為為參數(shù))。
(1)當(dāng)時(shí),求曲線Cl與C2公共點(diǎn)的直角坐標(biāo); 
(2)若,當(dāng)變化時(shí),設(shè)曲線C1與C2的公共點(diǎn)為A,B,試求AB中點(diǎn)M軌跡的極坐標(biāo)方程,并指出它表示什么曲線.

查看答案和解析>>

同步練習(xí)冊(cè)答案