已知等比數(shù)列{an}的前n項和Sn滿足:S4-S1=28,且a3+2是a2,a4的等差中項.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{an}為遞增數(shù)列,,,問是否存在最小正整數(shù)n使得成立?若存在,試確定n的值,不存在說明理由.
(1)或;(2)的最小值為.
解析試題分析:(1)由已知可得
,解之得,
從而可得或.
(2)根據(jù)數(shù)列單調(diào)遞增,得,從而,
利用“裂項相消法”求得=.
假設(shè)存在,根據(jù),解得(不合題意舍去),
依據(jù)為正整數(shù),所以的最小值為.
(1)設(shè)等比數(shù)列的首項為,公比為q,
依題意,有,
由可得得 3分
解之得 5分
所以或 6分
(2)因為數(shù)列單調(diào)遞增,
, 7分
所以
. 9分
假設(shè)存在,則有,整理得:
解得(不合題意舍去) 11分
又因為為正整數(shù),所以的最小值為. 12分
考點:等比數(shù)列及其性質(zhì),數(shù)列的求和,“裂項相消法”,不等式的解法.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}的前n項和為Sn,a1=2.當n≥2時,Sn-1+1,an,Sn+1成等差數(shù)列.
(1)求證:{Sn+1}是等比數(shù)列;
(2)求數(shù)列{nan}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列和滿足:,其中為實數(shù),為正整數(shù).
(1)對任意實數(shù),求證:不成等比數(shù)列;
(2)試判斷數(shù)列是否為等比數(shù)列,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)(2011•重慶)設(shè)實數(shù)數(shù)列{an}的前n項和Sn滿足Sn+1=an+1Sn(n∈N*).
(Ⅰ)若a1,S2,﹣2a2成等比數(shù)列,求S2和a3.
(Ⅱ)求證:對k≥3有0≤ak≤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(2013•湖北)已知等比數(shù)列{an}滿足:|a2﹣a3|=10,a1a2a3=125.
(1)求數(shù)列{an}的通項公式;
(2)是否存在正整數(shù)m,使得?若存在,求m的最小值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知各項均為正數(shù)的數(shù)列前n項和為,首項為,且等差數(shù)列。
(1)求數(shù)列的通項公式;
(2)若,設(shè),求數(shù)列的前n項和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com