某種產(chǎn)品的廣告費支出x與銷售額y(單位:百萬元)之間有如下對應(yīng)數(shù)據(jù):
x 2 4 5 6 8
y 30 40 60 50 70
其中 b=
n
i-1
xiyi-n
.
x
-y
n
i-1
x
2
i
-n
-2
x

(1)畫出散點圖;
(2)求回歸直線方程;
(3)試預測廣告支出為10百萬元時,銷售額多大?
考點:回歸分析
專題:計算題,應(yīng)用題
分析:(1)根據(jù)表中所給的五組數(shù)據(jù),得到五個點的坐標,在平面直角坐標系中畫出散點圖.
(2)先求出橫標和縱標的平均數(shù),得到這組數(shù)據(jù)的樣本中心點,利用最小二乘法求出線性回歸方程的系數(shù),代入樣本中心點求出a的值,寫出線性回歸方程.
(3)將x=10代入回歸直線方程求出y的值即為當廣告費支出10(百萬元)時的銷售額的估計值.
解答: 解:(1)散點圖如圖:

(2)
.
x
=5,
.
y
=50,
5
i=1
xiyi=1380,5
.
x
.
y
=1250,
5
i=1
xi2=145,5
.
x
2
=125,b=
138-1250
145-125
=6.5,
a=50-6.5×5=17.5,
∴回歸直線方程為y=6.5x+17.5;
(3)當x=10百萬元時,y=92.5百萬元.
點評:本題考查了線性回歸直線方程的求法及應(yīng)用,解題的關(guān)鍵是利用最小二乘法求回歸直線方程的系數(shù).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)=3ax2+2bx+c,若a+b+c=0,f(0)>0,f(1)>0.
(1)若a>0,求
b
a
的取值范圍;
(2)判斷方程f(x)=0在(0,1)內(nèi)實根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)=lnx+
a
x2

(1)當a=1時,求f(x)的單調(diào)區(qū)間;
(2)求f(x)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(x2+ax-2a2+3a)•ex,其中a∈R.
(1)是否存在實數(shù)a,使得函數(shù)y=f(x)在R上單調(diào)遞增?若存在,求出的a值或取值范圍;否則,請說明理由.
(2)若a<0,且函數(shù)y=f(x)的極小值為-
3
2
e,求函數(shù)的極大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)=
1
4
x2+
1
2
x-
3
4
,正數(shù)數(shù)列{an}的前n項和為Sn,且Sn=f(an),(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)若a1b1+a2b2+…+anbn=2n+1(2n-1)+2對一切n∈N*都成立,求{bn}的通項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平行四邊形ABCD的三個頂點A、B、C的坐標分別是(-2,1),(-1,3),(2,2),試用兩種方法分別求點D的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,測量河對岸的塔高AB時,可以選與塔底B在同一水平面內(nèi)的兩個觀測點C與D,測得∠BCD=15°,∠BDC=30°,CD=30m,并在點C處測得塔頂A的仰角為60°,求塔高AB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)a∈R,函數(shù)y=lg(ax2-2x-2a)的定義域為A,不等式x2-4x+3<0的解集為B,若A∩B≠∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

log
3
4
a<1,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習冊答案