有下列命題:①雙曲線
x2
25
-
y2
9
=1與橢圓
x2
35
+y2=1有相同的焦點(diǎn);②(lnx)=
1
xlge
;③(tanx)=
1
cos2x
;④(
u
v
=
uv-vu
v2
;⑤?x∈R,x2-3x+3≠0.其中是真命題的有:
①③⑤
①③⑤
.(把你認(rèn)為正確命題的序號(hào)都填上)
分析:對(duì)于①分別計(jì)算雙曲線、橢圓中的c2,再根據(jù)焦點(diǎn)都在x軸上,可判斷;對(duì)于②③④直接利用導(dǎo)數(shù)公式可判斷,對(duì)于⑤△<0,故正確.
解答:解:對(duì)于①雙曲線中c2=25+9=24,橢圓c2=35-1=34,且焦點(diǎn)都在x軸上,故正確;
對(duì)于②(lnx)′=
1
x
,故不正確;對(duì)于③(tanx)′=(
sinx
cosx
)
/
=
1
cos2x
,故正確;
對(duì)于④(
u
v
)′=
u/ v-uv/
v2
故不正確;
對(duì)于⑤△<0,故正確,
故答案為①③⑤
點(diǎn)評(píng):本題真命題的個(gè)數(shù)的判斷,必須一一進(jìn)行驗(yàn)證,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

有下列命題:
①雙曲線
x2
25
-
y2
9
=1
與橢圓
x2
35
+y2=1
有相同的焦點(diǎn);
②“-
1
2
<x<0
”是“2x2-5x-3<0”必要不充分條件;
③“若xy=0,則x、y中至少有一個(gè)為0”的否命題是真命題.;
④若p是q的充分條件,r是q的必要條件,r是s的充要條件,則s是p的必要條件;
其中是真命題的有:
 
.(把你認(rèn)為正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有下列命題:
①雙曲線
x2
25
-
y2
9
=1與橢圓
x2
35
+y2=1有相同的焦點(diǎn);
②“-
1
2
<x<0”是“2x2-5x-3<0”必要不充分條件;
③若向量
a
b
共線,則向量
a
b
所在的直線平行;
④若向量
a
b
,
c
兩兩共面,則向量
a
,
b
,
c
一定也共面;
⑤?x∈R,x2-3x+3≠0.
其中是真命題的個(gè)數(shù)( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有下列命題:
①雙曲線
x2
25
-
y2
9
=1與橢圓
x2
35
+y2=1
有相同焦點(diǎn);
②“-
1
2
<x<0”是“2x2-5x-3<0”必要不充分條件;
③若
a
、
b
共線,則
a
b
所在的直線平行;
④若
a
,
b
c
三向量兩兩共面,則
a
b
、
c
三向量一定也共面;
⑤?x∈R,x2-3x+3≠0.
其中是真命題的有:
①⑤
①⑤
.(把你認(rèn)為正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的右支上一點(diǎn),A1,A2分別為雙曲線的左、右頂點(diǎn),F(xiàn)1,F(xiàn)2分別為雙曲線的左、右焦點(diǎn),雙曲線的離心率為e,有下列命題:①雙曲線的一條準(zhǔn)線被它的兩條漸近線所截得的線段長度為
2ab
a2+b2
;
②若|PF1|=e|PF2|,則e的最大值為
2
;③△PF1F2的內(nèi)切圓的圓心橫坐標(biāo)為a;④若直線PF1的斜率為k,則e2-k2>1,其中正確命題的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案