(09年萊西一中模擬理)(14分)已知點H(-3,0),點P軸上,點Q軸的正半軸上,點M在直線PQ上,且滿足, .

(Ⅰ)當(dāng)點P軸上移動時,求點M的軌跡C;

(Ⅱ)過定點作直線交軌跡CA、B兩點,ED點關(guān)于坐標(biāo)原點O的對稱點,求證:

(Ⅲ)在(Ⅱ)中,是否存在垂直于軸的直線被以AD為直徑的圓截得的弦長恒為定值?若存在求出的方程;若不存在,請說明理由.

解析:(Ⅰ)設(shè),

,      …………………2分

                   …………………3分

.                 ………………………………………………4分

∴動點M的軌跡C是以O(shè)(0,0)為頂點,以(1,0)為焦點的拋物線(除去原點).

             …………………………………………5分

(Ⅱ)解法一:(1)當(dāng)直線垂直于軸時,根據(jù)拋物線的對稱性,有;

                                                         ……………6分

(2)當(dāng)直線軸不垂直時,依題意,可設(shè)直線的方程為,,則AB兩點的坐標(biāo)滿足方程組

 

消去并整理,得

,

.   ……………7分

設(shè)直線AEBE的斜率分別為,則:

.  …………………9分

,

,

,

.

綜合(1)、(2)可知.  …………………10分

解法二:依題意,設(shè)直線的方程為,,則A,B兩點的坐標(biāo)滿足方程組:

消去并整理,得

,

. ……………7分

設(shè)直線AEBE的斜率分別為,則:

.  …………………9分

,

,

,

.        ……………………………………………………10分

(Ⅲ)假設(shè)存在滿足條件的直線,其方程為,AD的中點為,AD為直徑的圓相交于點FG,FG的中點為H,則,點的坐標(biāo)為.

,

,

 .                  …………………………12分

,

,得

此時,.

∴當(dāng),即時,(定值).

∴當(dāng)時,滿足條件的直線存在,其方程為;當(dāng)時,滿足條件的直線不存在.    

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(09年萊西一中模擬理)(12分)

設(shè)是函數(shù)的一個極值點.

   (Ⅰ)求的關(guān)系式(用表示),并求的單調(diào)區(qū)間;

   (Ⅱ)設(shè),使得成立?若存在,求的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年萊西一中模擬文)(12分)某工廠統(tǒng)計資料顯示,產(chǎn)品次品率與日產(chǎn)量(單位件,,)的關(guān)系如下:

1

2

3

4

96

又知每生產(chǎn)一件正品盈利(為正常數(shù))元,每生產(chǎn)一件次品就損失元.

(Ⅰ)將該廠日盈利額(元)表示為日產(chǎn)量的函數(shù);

(Ⅱ)為了獲得最大贏利,該廠的日產(chǎn)量應(yīng)定為多少件?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年萊西一中模擬理)(12分)

    已知將一枚質(zhì)地不均勻的硬幣拋擲三次,三次正面均朝上的概率為

   (1)求拋擲這樣的硬幣三次,恰有兩次正面朝上的概率;

   (2)拋擲這樣的硬幣三次后,拋擲一枚質(zhì)地均勻的硬幣一次,記四次拋擲后正面朝上的總次數(shù)為ξ,求隨機變量ξ的分布列及期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年萊西一中模擬)(12分)如圖,一只螞蟻繞一個豎直放置的圓環(huán)逆時針勻速爬行,已知圓環(huán)的半徑為m,圓環(huán)的圓心距離地面的高度為,螞蟻每分鐘爬行一圈,若螞蟻的起始位置在最低點P0處.

(1)試確定在時刻t時螞蟻距離地面的高度;

(2)畫出函數(shù)時的圖象;

(3)在螞蟻繞圓環(huán)爬行的一圈內(nèi),有多長時間螞蟻距離地面超過m?

查看答案和解析>>

同步練習(xí)冊答案