【題目】隨著機構(gòu)改革的深入,各單位要減員增效,一家公司現(xiàn)有職員人(),且為偶數(shù),每人每年可創(chuàng)利5萬元,據(jù)評估,每裁員1人,留守職員每人每年多創(chuàng)利潤0. 1萬元,但公司要付下崗職員每人每年3萬元的生活費.

1)假設公司裁員人,請寫出公司獲得的利益關于的解析式;

2)公司正常的運轉(zhuǎn)所需人數(shù)不得少于現(xiàn)有職員的,為了獲得最大效益,該公司應當裁員多少人.

【答案】1;(2)當,裁員;當,裁員

【解析】

1)設公司裁員人,公司獲得的利益為,得到,化簡即可.

2)因為,利用二次函數(shù)的性質(zhì)分類討論即可求出的最大值.

(1)設公司裁員人,公司獲得的利益為,由題知:

.

2)因為,所以.

即函數(shù)的定義域為.

又因為,所以.

由(1)知,

對稱軸為

時,即

時,取得最大值.

,即,

時,取得最大值.

又因為,綜上所述:

, 時,取得最大值,

,時,取得最大值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,已知直線與雙曲線交于A,B兩點,且點A的橫坐標為4.

(1)求的值及B點坐標;

(2)結(jié)合圖形,直接寫出一次函數(shù)的函數(shù)值大于反比例函數(shù)的函數(shù)值時x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)已知橢圓的離心率為,橢圓的短軸端點與雙曲線的焦點重合,過點且不垂直于軸的直線與橢圓相交于兩點.

1)求橢圓的方程;

2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場為提高服務質(zhì)量,隨機調(diào)查了50名男顧客和50名女顧客,每位顧客對該商場的服務給出滿意或不滿意的評價,得到下面列聯(lián)表:

滿意

不滿意

男顧客

40

10

女顧客

30

20

1)分別估計男、女顧客對該商場服務滿意的概率;

2)能否有95%的把握認為男、女顧客對該商場服務的評價有差異?

附:

PK2k

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學校欲在甲、乙兩店采購某款投影儀,該投影儀原價為每臺2000元,甲店用如下方法促銷:買一臺單價為1950元,買二臺單價為1900元,每多買一臺,則所買各臺單價均再減50元,但最低不能低于1200元;乙店一律按原售價的80%促銷,學校需要購買臺投影儀,若在甲店購買費用為元,若在乙店購買費用記為.

1)分別求出的解析式;

2)當購買臺時,在哪家店買更省錢?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲同學家到乙同學家的途中有一座公園,甲同學家到公園的距離與乙同學家到公園的距離都是2km.如圖所示表示甲同學從家出發(fā)到乙同學家經(jīng)過的路程ykm)與時間xmin)的關系,下列結(jié)論正確的是(

A.甲同學從家出發(fā)到乙同學家走了60min

B.甲從家到公園的時間是30min

C.甲從家到公園的速度比從公園到乙同學家的速度快

D.時,yx的關系式為

E.時,yx的關系式為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“雙十一網(wǎng)購狂歡節(jié)”源于淘寶商城(天貓)2009年11月11 日舉辦的促銷活動,當時參與的商家數(shù)量和促銷力度均有限,但營業(yè)額遠超預想的效果,于是11月11日成為天貓舉辦大規(guī)模促銷活動的固定日期.如今,中國的“雙十一”已經(jīng)從一個節(jié)日變成了全民狂歡的“電商購物日”.某淘寶電商分析近8年“雙十一”期間的宣傳費用(單位:萬元)和利潤(單位:十萬元)之間的關系,得到下列數(shù)據(jù):

2

3

4

5

6

8

9

11

1

2

3

3

4

5

6

8

(1)請用相關系數(shù)說明之間是否存在線性相關關系(當時,說明之間具有線性相關關系);

(2)根據(jù)(1)的判斷結(jié)果,建立之間的回歸方程,并預測當時,對應的利潤為多少(精確到0.1).

附參考公式:回歸方程中最小二乘估計分別為

,相關系數(shù)

參考數(shù)據(jù):

.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2017年春節(jié)期間,某服裝超市舉辦了一次有獎促銷活動,消費每超過600元(含600元),均可抽獎一次,抽獎方案有兩種,顧客只能選擇其中的一種.

方案一:從裝有10個形狀、大小完全相同的小球(其中紅球3個,黑球7個)的抽獎盒中,一次性摸出3個球,其中獎規(guī)則為:若摸到3個紅球,享受免單優(yōu)惠;若摸出2個紅球則打6折,若摸出1個紅球,則打7折;若沒摸出紅球,則不打折.

方案二:從裝有10個形狀、大小完全相同的小球(其中紅球3個,黑球7個)的抽獎盒中,有放回每次摸取1球,連摸3次,每摸到1次紅球,立減200元.

(1)若兩個顧客均分別消費了600元,且均選擇抽獎方案一,試求兩位顧客均享受免單優(yōu)惠的概率;

(2)若某顧客消費恰好滿1000元,試從概率的角度比較該顧客選擇哪一種抽獎方案更合算?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某射擊運動員每次擊中目標的概率都是0.8,現(xiàn)采用隨機模擬的方法估計該運動員射擊4次,至少擊中3次的概率:先由計算器給出09之間取整數(shù)值的隨機數(shù),指定0,1表示沒有擊中目標,2,34,56,78,9表示擊中目標,以4個隨機數(shù)為一組,代表射擊4次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了20組隨機數(shù),根據(jù)以下數(shù)據(jù)估計該運動員射擊4次,至少擊中3次的概率為(

7527 0293 7140 9857

0347 4373 8636 6947

1417 4698 0371 6233

2616 8045 6011 3661

9597 7424 7610 4281

A.0.852B.0.8192C.0.8D.0.75

查看答案和解析>>

同步練習冊答案