精英家教網 > 高中數學 > 題目詳情
若斜率為的直線l與橢圓+=1(a>b>0)有兩個不同的交點,且這兩個交點在x軸上的射影恰好是橢圓的兩個焦點,則該橢圓的離心率為   
【答案】分析:根據題意可知:兩交點的橫坐標為-c,c,縱坐標分別為-,,所以由斜率公式可得:=轉化為:2b2=ac=2(a2-c2),兩邊同除以a2,轉化為了2e2+e-2=0求解.
解答:解:由題意知:兩交點的橫坐標為-c,c,縱坐標分別為-,,
∴由=
轉化為:2b2=2(a2-c2)=ac
即2e2+e-2=0,
解得e=(負根舍去).
故答案為:
點評:本題主要考查橢圓的幾何性質及直線的斜率公式和離心率公式,同時,還考查了轉化思想.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

橢圓C的方程
x2
a2
+
y2
b2
=1(a>b>0)
,斜率為1的直L與橢C交于A(x1,y1)B(x2,y2)兩點.
(Ⅰ)若橢圓的離心率e=
3
2
,直線l過點M(b,0),且
OA
OB
=-
12
5
,求橢圓C的方程;
(Ⅱ)直線l過橢圓的右焦點F,設向量
OP
=λ(
OA
+
OB
)(λ>0),若點P在橢C上,λ的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•浦東新區(qū)三模)已知橢圓C的長軸長是焦距的兩倍,其左、右焦點依次為F1、F2,拋物線M:y2=4mx(m>0)的準線與x軸交于F1,橢圓C與拋物線M的一個交點為P.
(1)當m=1時,求橢圓C的方程;
(2)在(1)的條件下,直線l過焦點F2,與拋物線M交于A、B兩點,若弦長|AB|等于△PF1F2的周長,求直線l的方程;
(3)由拋物線弧y2=4mx(0≤x≤
2m
3
)
和橢圓弧
x2
4m2
+
y2
3m2
=1
(
2m
3
≤x≤2m)

(m>0)合成的曲線叫“拋橢圓”,是否存在以原點O為直角頂點,另兩個頂點A1、A2落在“拋橢圓”上的等腰直角三角形OA1A2,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

橢圓C的方程數學公式,斜率為1的直L與橢C交于A(x1,y1)B(x2,y2)兩點.
(Ⅰ)若橢圓的離心率數學公式,直線l過點M(b,0),且數學公式,求橢圓C的方程;
(Ⅱ)直線l過橢圓的右焦點F,設向量數學公式=λ(數學公式+數學公式)(λ>0),若點P在橢C上,λ的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2011年上海市浦東新區(qū)高考數學三模試卷(理科)(解析版) 題型:解答題

已知橢圓C的長軸長是焦距的兩倍,其左、右焦點依次為F1、F2,拋物線M:y2=4mx(m>0)的準線與x軸交于F1,橢圓C與拋物線M的一個交點為P.
(1)當m=1時,求橢圓C的方程;
(2)在(1)的條件下,直線l過焦點F2,與拋物線M交于A、B兩點,若弦長|AB|等于△PF1F2的周長,求直線l的方程;
(3)由拋物線弧y2=4mx和橢圓弧
(m>0)合成的曲線叫“拋橢圓”,是否存在以原點O為直角頂點,另兩個頂點A1、A2落在“拋橢圓”上的等腰直角三角形OA1A2,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:2011年上海市浦東新區(qū)高考數學三模試卷(理科)(解析版) 題型:解答題

已知橢圓C的長軸長是焦距的兩倍,其左、右焦點依次為F1、F2,拋物線M:y2=4mx(m>0)的準線與x軸交于F1,橢圓C與拋物線M的一個交點為P.
(1)當m=1時,求橢圓C的方程;
(2)在(1)的條件下,直線l過焦點F2,與拋物線M交于A、B兩點,若弦長|AB|等于△PF1F2的周長,求直線l的方程;
(3)由拋物線弧y2=4mx和橢圓弧
(m>0)合成的曲線叫“拋橢圓”,是否存在以原點O為直角頂點,另兩個頂點A1、A2落在“拋橢圓”上的等腰直角三角形OA1A2,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案