等比數(shù)列{an}中,a1a3a5=8,則a3=(  )
A、1B、2C、3D、4
考點(diǎn):等比數(shù)列的性質(zhì)
專(zhuān)題:計(jì)算題,等差數(shù)列與等比數(shù)列
分析:根據(jù)等比數(shù)列的性質(zhì),得到a32=a1•a5,把已知條件代入即可求出a3的值.
解答: 解:由等比數(shù)列{an}中,a1a3a5=8,a32=a1•a5,得到a33=8,
解得:a3=2.
故選B.
點(diǎn)評(píng):此題考查了等比數(shù)列的性質(zhì),利用a32=a1•a5是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了解某班關(guān)注NBA是否與性別有關(guān),對(duì)本班 48人進(jìn)行了問(wèn)卷調(diào)查得到如下的列聯(lián)表:
關(guān)注NBA不關(guān)注NBA合   計(jì)
男    生6
女    生10
合    計(jì)48
已知在全班48人中隨機(jī)抽取1人,抽到關(guān)注NBA的學(xué)生的概率為
2
3

(1)請(qǐng)將上面列連表補(bǔ)充完整(不用寫(xiě)計(jì)算過(guò)程);
(2)判斷是否有95%的把握認(rèn)為關(guān)注NBA與性別有關(guān)?說(shuō)明你的理由.
下列的臨界值表,供參考
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
(參考公式:k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
)其中 n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
m
=(sin2x,cosx),
n
=(
3
,2cosx)(x∈R),f(x)=
m
n
-1,
(1)求f(x)的單調(diào)遞增區(qū)間.
(2)求f(x)在[0,
π
3
]的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的不等式mx2-10x+2m2≤0的解集為A=[1,a],集合B={x|log2(x2-x)>1}.
(Ⅰ)求實(shí)數(shù)m,a的值;
(Ⅱ)求A∩B,(∁RA)∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)隨機(jī)變量ξ服從正態(tài)分布N(2,9),若P(ξ>a+b)=P(ξ<a-b),則a=( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列計(jì)算正確的是( 。
A、(-2a)2=2a2
B、a6÷a3=a2
C、-2(a-1)=2-2a
D、a•a2=a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

規(guī)定[t]為不超過(guò)t的最大整數(shù),例如[12.6]=12,[-3.5]=-4,對(duì)任意實(shí)數(shù)x,令f1(x)=[4x],g(x)=4x-[4x],進(jìn)一步令f2(x)=f1[g(x)].
(1)若x=
7
16
,分別求f1(x)和f2(x);
(2)若f1(x)=1,f2(x)=3同時(shí)滿(mǎn)足,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中,滿(mǎn)足“對(duì)任意x1,x2∈(0,+∞),當(dāng)x1<x2時(shí),都有f(x1)>f(x2)”的是( 。
A、f(x)=(x-1)2
B、f(x)=
1
x
C、f(x)=ex
D、f(x)=lnx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知四棱錐P-ABCD,底面ABCD是∠A=60°,邊長(zhǎng)為a的菱形,又PD⊥底面ABCD,且PD=CD,點(diǎn)M,N分別是棱AD,PC的中點(diǎn).
(1)證明:DN∥平面PMB;
(2)證明:平面PMB⊥平面PAD;
(3)三棱錐A-PBM的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案