以雙曲線的離心率為半徑,右焦點為圓心的圓與雙曲線的漸近線相切,則的值為(     )
A.B.C.D.
D

試題分析:易知雙曲線的,又雙曲線的漸近線方程為,所以,解得。
點評:雙曲線的漸近線方程為;雙曲線的漸近線方程為。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

與拋物線相切傾斜角為的直線軸和軸的交點分別是A和B,那么過A、B兩點的最小圓截拋物線的準線所得的弦長為
A.4                B.2            C.2            D. 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設橢圓的兩個焦點分別為,過作橢圓長軸的垂線交橢圓于點,
為等腰直角三角形,則橢圓的離心率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若拋物線C1:(p >0)的焦點F恰好是雙曲線C2:(a>0,b >0)的右焦點,且它們的交點的連線過點F,則雙曲線的離心率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

拋物線y=x2在點M()處的切線的傾斜角是(   )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知對稱中心為原點的雙曲線與橢圓有公共的焦點,且它們的離心率互為倒數(shù),則該橢圓的標準方程為___________________。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題13分)在平面直角坐標系中,是拋物線的焦點,是拋物線上位于第一象限內的任意一點,過三點的圓的圓心為,點到拋物線的準線的距離為.
(Ⅰ)求拋物線的方程;
(Ⅱ)是否存在點,使得直線與拋物線相切于點?若存在,求出點的坐標;若不存在,說明理由;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若雙曲線的一條漸近線方程為,則此雙曲線的離心率為      

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)已知圓的圓心為原點,且與直線相切。

(1)求圓的方程;
(2)點在直線上,過點引圓的兩條切線,切點為,求證:直線恒過定點。

查看答案和解析>>

同步練習冊答案