已知函數(shù),c是實(shí)數(shù)常數(shù))的圖像上的一個(gè)最高點(diǎn),與該最高點(diǎn)最近的一個(gè)最低點(diǎn)是,
(1)求函數(shù)的解析式及其單調(diào)增區(qū)間;
(2)在△ABC中,角A、B、C所對(duì)的邊分別為,且,角A的取值范圍是區(qū)間M,當(dāng)時(shí),試求函數(shù)的取值范圍.

(1),單調(diào)遞增區(qū)間是;(2)

解析試題分析:(1)三角函數(shù)問題一般都要化為的一個(gè)三角函數(shù)的形式,然后才可利用正弦函數(shù)的性質(zhì)解題,這個(gè)函數(shù)圖象上相鄰有最高點(diǎn)與最低點(diǎn)的橫坐標(biāo)之差的絕對(duì)值為半個(gè)周期,而周期,再加上最高(低)點(diǎn)在函數(shù)圖象上,我們就可出這個(gè)函數(shù)的解析式了();(2)由,根據(jù)向量數(shù)量積定義我們可求出,那么三角形的另一內(nèi)角的范圍應(yīng)該是,即函數(shù)的范圍是,然后我們把一個(gè)整體,得出,而正弦函數(shù)時(shí)取值范圍是,因此可求出的值域.
試題解析:(1)∵
.
分別是函數(shù)圖像上相鄰的最高點(diǎn)和最低點(diǎn),
解得
.
,解得.
∴函數(shù)的單調(diào)遞增區(qū)間是.
(2)∵在中,
.
,即.
.
當(dāng)時(shí),,考察正弦函數(shù)的圖像,可知,.
,即函數(shù)的取值范圍是.
考點(diǎn):(1)五點(diǎn)法與函數(shù)的圖象;(2)三角函數(shù)在給定區(qū)間的值域.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知
(1)化簡;
(2)若是第三象限角,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的周期為.

(1)若,求它的振幅、初相;
(2)在給定的平面直角坐標(biāo)系中作出該函數(shù)在的圖像;
(3)當(dāng)時(shí),根據(jù)實(shí)數(shù)的不同取值,討論函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),鈍角(角對(duì)邊為)的角滿足.
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)若,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)平面向量,,函數(shù)。
(Ⅰ)求函數(shù)的值域和函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng),且時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知向量,
(1)若,求的值;
(2)若,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(Ⅰ)若點(diǎn)在角的終邊上,求的值;(Ⅱ)若,求的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中,已知.
(1)求證:;
(2)若求角A的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)向量,函數(shù).
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)求使不等式成立的的取值集合.

查看答案和解析>>

同步練習(xí)冊(cè)答案