11.已知函數(shù)$f(x)=\sqrt{3}sin2x+2{cos^2}x+1$.
(I)求函數(shù)f(x)的單調(diào)遞增區(qū)間和對稱中心;
(II)設△ABC內(nèi)角A,B,C的對邊分別為a,b,c,且$c=\sqrt{3},f(C)=3$,若向量$\overrightarrow m=(sinA,-1)$與向量$\overrightarrow n=(2,sinB)$垂直,求a,b的值.

分析 (I)利用二倍角和輔助角公式將函數(shù)化簡,結(jié)合三角函數(shù)的性質(zhì)求解單調(diào)遞增區(qū)間和對稱中心即可.
(II)根據(jù)f(C)=3,求出C角大小;向量$\overrightarrow m=(sinA,-1)$與向量$\overrightarrow n=(2,sinB)$垂直,建立關系,求出角A,B的關系,利用余弦定理即可求出a,b的值.

解答 解:(I)函數(shù)$f(x)=\sqrt{3}sin2x+2{cos^2}x+1$.
化簡可得:$f(x)=\sqrt{3}sin2x+cos2x+2=2sin(2x+\frac{π}{6})+2$,
令$-\frac{π}{2}+2kπ≤2x+\frac{π}{6}≤\frac{π}{2}+2kπ$,
得:$-\frac{π}{3}+kπ≤x≤\frac{π}{6}+kπ$,
∴函數(shù)f(x)的單調(diào)遞增區(qū)間為$[-\frac{π}{3}+kπ,\frac{π}{6}+kπ],k∈z$.
∵對稱中心橫坐標:$2x+\frac{π}{6}=kπ$,k∈Z,
∴$x=-\frac{π}{12}+\frac{kπ}{2},k∈Z$,
∴對稱中心:$(-\frac{π}{12}+\frac{kπ}{2},2)$,k∈Z.
(II)由題意可知,$f(C)=2sin(2C+\frac{π}{6})+2=3$,
∴$sin(2C+\frac{π}{6})=\frac{1}{2}$,
∵0<C<π,
∴$2C+\frac{π}{6}=\frac{π}{6}$或$2C+\frac{π}{6}=\frac{5π}{6}$,
即C=0(舍)或$C=\frac{π}{3}$.
又∵$\overrightarrow m=(sinA,-1)$與$\overrightarrow n=(2,sinB)$垂直,
∴2sinA-sinB=0,即2a=b…①.
由余弦定理:
${c^2}={a^2}+{b^2}-2abcos\frac{π}{3}={a^2}+{b^2}-ab=3$…②.
由①②解得,a=1,b=2.
故得a的值為1,b的值為2.

點評 本題主要考查三角函數(shù)的圖象和性質(zhì)以及向量的垂直的坐標計算和余弦定理的運用,利用三角函數(shù)公式將函數(shù)進行化簡是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.數(shù)列{an}滿足下列關系:a1=2a,an+1=2a-$\frac{{a}^{2}}{{a}_{n}}$,a≠0,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.用配方法解下列方程,配方正確的是( 。
A.2y2-4y-4=0可化為(y-1)2=4B.x2-2x-9=0可化為(x-1)2=8
C.x2+8x-9=0可化為(x+4)2=16D.x2-4x=0可化為(x-2)2=4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知方程2x2-(m+1)x+m=0有一正根和一負根,則m的取值范圍是( 。
A.$(-∞,3-2\sqrt{2})$B.$(-∞,3+2\sqrt{2})$C.$(3-2\sqrt{2},+∞)$D.(-∞,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.{an}數(shù)列的前n項和Sn符合Sn=k(2n-1)且a3=8,
(1)求{an}通項公式;
(2)求{nan}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.函數(shù)f(x)=ax-1-2(a>0,a≠1)的圖象恒過定點A,若點A在一次函數(shù)$y=\frac{mx-1}{n}$的圖象上,其中m>0,n>0,則$\frac{1}{m}+\frac{2}{n}$的最小值為( 。
A.4B.5C.6D.$3+2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.從某居民區(qū)隨機抽取10個家庭,獲得第i個家庭的月收入xi(單位:千元)與月儲蓄yi(單位:千元)的數(shù)據(jù)資料,算得$\sum_{i=1}^{10}$xi=80,$\sum_{i=1}^{10}$yi=20,$\sum_{i=1}^{10}$xiyi=184,$\sum_{i=1}^{10}$x${\;}_{i}^{2}$=720.附:線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$中,$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\overline{{x}^{2}}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$,其中$\overline{x}$,$\overline{y}$為樣本平均值.
(1)求家庭的月儲蓄y對月收入x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(2)判斷變量x與y之間是正相關還是負相關;
(3)若該居民區(qū)某家庭月收入為7千元,預測該家庭的月儲蓄.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知集合P={x|x2-2x≥0},Q={x||x-1|≤2},則P∩Q={x|-1≤x≤0或2≤x≤3},(∁RP)∪Q={x|-1≤x≤3}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知兩點A(4,5),B(-2,3),則$|\overrightarrow{AB}|$=2$\sqrt{10}$.

查看答案和解析>>

同步練習冊答案