(1)若函數(shù)f(x)在區(qū)間(-∞,+∞)上為單調增函數(shù),求實數(shù)a的取值范圍;
(2)設A(x1,f(x1))、B(x2,f(x2))是函數(shù)f(x)的兩個極值點,若直線AB的斜率不小于-,求實數(shù)a的取值范圍.
解:(1)因為函數(shù)f(x)在(-∞,+∞)上為單調遞增函數(shù),
所以f′(x)=x2+ax+a>0在(-∞,+∞)上恒成立.
由Δ=a2-4a<0,解得0<a<4.
又當a=0時,f(x)=x3-2在(-∞,+∞)上為單調遞增函數(shù);
當a=4時,f(x)=x3+2x2+4x-2=(x+2)3-在(-∞,+∞)上為單調遞增函數(shù),
所以0≤a≤4.
(2)依題意,方程f′(x)=0有兩個不同的實數(shù)根x1、x2,
由Δ=a2-4a>0,解得a<0或a>4,且x1+x2=-a,x1x2=a.
所以f(x1)-f(x2)=[(x12+x1x2+x22)+a(x1+x2)+a](x1-x2).
所以=[(x1+x2)2-x1x2]+a(x1+x2)+a=(a2-a)+a(-a)+a=-a2+a≥-.
解之,得-1≤a≤5.
所以實數(shù)a的取值范圍是-1≤a<0或4<a≤5.
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
x |
a |
b |
x |
4c2 |
k(k+c) |
查看答案和解析>>
科目:高中數(shù)學 來源:浙江省東陽中學高三10月階段性考試數(shù)學理科試題 題型:022
已知函數(shù)f(x)的圖像在[a,b]上連續(xù)不斷,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值,若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.已知函數(shù)f(x)=x2,x∈[-1,4]為[-1,4]上的“k階收縮函數(shù)”,則k的值是_________.
查看答案和解析>>
科目:高中數(shù)學 來源:上海模擬 題型:解答題
x |
a |
b |
x |
4c2 |
k(k+c) |
查看答案和解析>>
科目:高中數(shù)學 來源:2009-2010學年河南省許昌市長葛三高高三第七次考試數(shù)學試卷(理科)(解析版) 題型:選擇題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com