定義在R上的函數(shù)f(x)的圖象關(guān)于點(diǎn)成中心對(duì)稱,對(duì)任意的實(shí)數(shù)x都有,且f(-1)=1,f(0)=-2,則f(1)+f(2)+f(3)+…+f(2008)+…+f(2008)的值為( )
A.-2
B.-1
C.0
D.1
【答案】分析:先根據(jù)條件確定函數(shù)的周期,再由函數(shù)的圖象關(guān)于點(diǎn)(-,0)成中心對(duì)稱知為奇函數(shù),從而求出f(1)、f(2)、f(3)的值,最終得到答案.
解答:解:由f(x)=-f(x+)得f(x)=f(x+3)即周期為3,
由圖象關(guān)于點(diǎn)(-,0)成中心對(duì)稱得f(x)+f(-x-)=0,
從而-f(x+)=-f(-x-),所以f(x)=f(-x).
由f(-1)=1,f(0)=-2,
∴f(1)=f(4)=…=f(2008)=1,
f(2)=f(5)=…=f(2006)=1,
f(3)=f(6)=…=f(2007)=-2,
∴f(1)+f(2)+f(3)+…+f(2008)+…+f(2008)=f(1)=1
故選D
點(diǎn)評(píng):點(diǎn)評(píng):本題主要考查函數(shù)的性質(zhì)--周期性和對(duì)稱性.函數(shù)的性質(zhì)是研究一個(gè)函數(shù)的基本,是每年高考必考題.其中根據(jù)已知條件判斷出函數(shù)的周期性,是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)既是偶函數(shù)又是周期函數(shù),若f(x)的最小正周期是π,且當(dāng)x∈[0,
π
2
]時(shí),f(x)=sinx,則f(
3
)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

20、已知定義在R上的函數(shù)f(x)=-2x3+bx2+cx(b,c∈R),函數(shù)F(x)=f(x)-3x2是奇函數(shù),函數(shù)f(x)在x=-1處取極值.
(1)求f(x)的解析式;
(2)討論f(x)在區(qū)間[-3,3]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足:f(x+2)=
1-f(x)1+f(x)
,當(dāng)x∈(0,4)時(shí),f(x)=x2-1,則f(2010)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
),最大值與最小值的差為4,相鄰兩個(gè)最低點(diǎn)之間距離為π,函數(shù)y=sin(2x+
π
3
)圖象所有對(duì)稱中心都在f(x)圖象的對(duì)稱軸上.
(1)求f(x)的表達(dá)式;    
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
,
π
2
]),求cos(x0-
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)的圖象是連續(xù)不斷的,且有如下對(duì)應(yīng)值表:
x 0 1 2 3
f(x) 3.1 0.1 -0.9 -3
那么函數(shù)f(x)一定存在零點(diǎn)的區(qū)間是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案