已知斜三棱柱—,側(cè)面與底面垂直,∠,,且⊥,=.
(1)試判斷與平面是否垂直,并說明理由;
(2)求側(cè)面與底面所成銳二面角的余弦值.
(1)AA1與平面A1BC不垂直
(2)
解析試題分析:解法一:如圖建立空間直角坐標(biāo)系,
(1)由條件知 1分
由面⊥面ABC,AA1⊥A1C,AA1=A1C,知 2分
∵ ……………3分
∴與不垂直,即AA1與BC不垂直,
∴AA1與平面A1BC不垂直……5分
(2)由ACC1A1為平行四邊形,
知==…7分
設(shè)平面BB1C1C的法向量,
由
令,則 9分
另外,平面ABC的法向量(0,0,1) 10分
所以側(cè)面BB1C1C與底面ABC所成銳二面角的余弦值為 12分
解法二:(1)取AC中點(diǎn)D,連結(jié)A1D,則A1D⊥AC.
又∵側(cè)面ACC1A1與底面ABC垂直,交線為AC,
∵A1D⊥面ABC
∴A1D⊥BC. 2分
假設(shè)AA1與平面A1BC垂直,則AA1⊥BC.
又A1D⊥BC,由線面垂直的判定定理,
BC⊥面A1AC,所以BC⊥AC,這樣在△ABC中
有兩個(gè)直角,與三角形內(nèi)角和定理矛盾.假設(shè)不
成立,所以AA1不與平面A1BC垂直 5分
(2)側(cè)面BB1C1C與底面ABC所成的銳二面角即為側(cè)面BB1C1C與A1B1C1底面所成的銳二面角.
過點(diǎn)C作A1C1的垂線CE于E,則CE⊥面A1B1C1,B1C1⊥CE.
過點(diǎn)E作B1C1的垂線EF于F,連結(jié)CF.
因?yàn)锽1C1⊥EF,B1C1⊥CE,所以B1C1⊥面EFC,B1C1⊥CF
所以∠CFE即為所求側(cè)面BB1C1C與地面A1B1C1所成的銳二面角的平面角 9分
由得
在Rt△EFC中,cos∠
所以,側(cè)面BB1C1C與底面ABC所成銳二面角的余弦值為 12分
考點(diǎn):線面垂直的判定,二面角的平面角
點(diǎn)評:主要是考查了空間中線面垂直以及二面角平面角的大小的求解,運(yùn)用向量法來求解,屬于常規(guī)試題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在直三棱柱(側(cè)棱垂直底面)中,M、N分別是BC、AC1中點(diǎn),AA1=2,AB=,AC=AM=1.
(1)證明:MN∥平面A1ABB1;
(2)求幾何體C—MNA的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,為圓的直徑,點(diǎn)、在圓上,,矩形所在的平面和圓所在的平面互相垂直,且,.
(1)求證:平面;
(2)設(shè)的中點(diǎn)為,求證:平面;
(3)設(shè)平面將幾何體分成的兩個(gè)錐體的體積分別為,,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,是半圓的直徑,是半圓上除、外的一個(gè)動(dòng)點(diǎn),垂直于半圓所在的平面, ∥,,,.
⑴證明:平面平面;
⑵當(dāng)三棱錐體積最大時(shí),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中點(diǎn)。
求證:
(1)PA∥平面BDE
(2)平面PAC平面BDE
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com