【題目】三棱錐D﹣ABC及其正視圖和側(cè)視圖如右圖所示,且頂點A,B,C,D均在球O的表面上,則球O的表面積為( )
A.32π
B.36π
C.128π
D.144π
科目:高中數(shù)學 來源: 題型:
【題目】已知:等比數(shù)列{}中,公比為q,且a1=2,a4=54,等差數(shù)列{}中,公差為d,b1=2,b1+b2+b3+b4=a1+ a2+ a3.
(I)求數(shù)列{}的通項公式;
(II)求數(shù)列{}的前n項和的公式;
(III)設,,其中n=1,2,…,試比較與的大小,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列{an}的前n項和為Sn , 且滿足Sn=2﹣an , n=1,2,3,….
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足b1=1,且bn+1=bn+an , 求數(shù)列{bn}的通項公式;
(3)設cn= ,數(shù)列{cn}的前n項和為Tn= .求n.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,有一塊矩形空地ABCD,AB=2km,BC=4km,根據(jù)周邊環(huán)境及地形實際,當?shù)卣?guī)劃在該空地內(nèi)建一個箏形商業(yè)區(qū)AEFG,箏形的頂點A,E,F(xiàn),G為商業(yè)區(qū)的四個入口,其中入口F在邊BC上(不包含頂點),入口E,G分別在邊AB,AD上,且滿足點A,F(xiàn)恰好關(guān)于直線EG對稱,矩形內(nèi)箏形外的區(qū)域均為綠化區(qū).
(1)請確定入口F的選址范圍;
(2)設商業(yè)區(qū)的面積為S1 , 綠化區(qū)的面積為S2 , 商業(yè)區(qū)的環(huán)境舒適度指數(shù)為 ,則入口F如何選址可使得該商業(yè)區(qū)的環(huán)境舒適度指數(shù)最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù),當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明:當20≤x≤200時,車流速度v是車流密度x的一次函數(shù).
(1)當0≤x≤200時,求函數(shù)v(x)的表達式;
(2)當車流密度x為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時)f(x)=xv(x)可以達到最大,并求出最大值.(精確到1輛/小時).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知橢圓的左右頂點為,右焦點為,一條準線方程是,點為橢圓上異于的兩點,點為的中點.
(1)求橢圓的標準方程;
(2)直線交直線于點,記直線的斜率為,直線的斜率為,求證:為定值;
(3)若,求直線斜率的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列命題:
存在每個面都是直角三角形的四面體;
若三棱錐的三條側(cè)棱兩兩垂直,則其三個側(cè)面也兩兩垂直;
棱臺的側(cè)棱延長后交于一點;
用一個平面去截棱錐,棱錐底面和截面之間的部分是棱臺;
其中正確命題的個數(shù)是
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點A(0,-2),橢圓E: (a>b>0)的離心率為,F是橢圓E的右焦點,直線AF的斜率為,O為坐標原點.
(1)求E的方程;
(2)設過點A的動直線l與E相交于P,Q兩點.當△OPQ的面積最大時,求l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù),為偶函數(shù),函數(shù)的圖象與直線相切.
(1)求的解析式;
(2)已知函數(shù)且,求的單調(diào)遞減區(qū)間和極值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com