設(shè)不等式的解集為M.
(I)求集合M;
(II)若a,b∈M,試比較ab+1與a+b的大。

(I)(II)

解析試題分析:(I)由
所以
(II)由(I)和
所以

考點:絕對值不等式解法,比較大小。
點評:簡單題,絕對值不等式解法,通常以“去絕對值符號”為出發(fā)點。有“平方法”,“分類討論法”,“幾何意義法”,不等式性質(zhì)法等等。比較大小,通常有“差比法”、“商比法”。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)求的解集;
(2)若關(guān)于的不等式的解集是,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(Ⅰ)當a = 3時,求不等式的解集;
(Ⅱ)若恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(I)當時,求不等式的解集;
(Ⅱ)若的解集包含,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=|x-2|+2|x-a|(a∈R).
(I)當時,解不等式f(x)>3;
(II)不等式在區(qū)間(-∞,+∞)上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知集合,則實數(shù)m的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系xOy中,將從點M出發(fā)沿縱、橫方向到達點N的任一路徑成為M到N的一條“L路徑”。如圖所示的路徑都是M到N的“L路徑”。某地有三個新建的居民區(qū),分別位于平面xOy內(nèi)三點處,F(xiàn)計劃在x軸上方區(qū)域(包含x軸)內(nèi)的某一點P處修建一個文化中心。

(I)寫出點P到居民區(qū)A的“L路徑”長度最小值的表達式(不要求證明);
(II)若以原點O為圓心,半徑為1的圓的內(nèi)部是保護區(qū),“L路徑”不能進入保護區(qū),請確定點P的位置,使其到三個居民區(qū)的“L路徑”長度值和最小。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)函數(shù)
(1)求f(x)≤6 的解集
(2)若f(x)≥m 對任意x∈R恒成立,求m的范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分10分)選修4—5:不等式選講已知函數(shù)
(1)當時,求的解集;
(2)若關(guān)于的不等式的解集是,求的取值范圍.

查看答案和解析>>

同步練習冊答案