已知數(shù)列是各項(xiàng)均不為0的等差數(shù)列,公差為,為其前n項(xiàng)和,且滿足,.?dāng)?shù)列滿足,, 為數(shù)列的前項(xiàng)和.
(1)求數(shù)列的通項(xiàng)公式;
(2)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;
(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有
的值;若不存在,請(qǐng)說(shuō)明理由.
(1) ;(2);(3)存在,,.
解析試題分析:(1)利用通項(xiàng)公式和求和公式展開(kāi)解析式,解方程組,得出,,寫(xiě)出解析式;(2)先用裂項(xiàng)相消法求出,再討論的奇數(shù)偶數(shù)兩種情況,利用恒成立解題;(3)先利用等比中項(xiàng)列出表達(dá)式,解出.
試題解析:(1)在中,令,
得 即 2分
解得,,∴ 3分
又∵時(shí),滿足,∴ 4分
(2)∵, 5分
∴. 6分
①當(dāng)為偶數(shù)時(shí),要使不等式恒成立,即需不等式恒成立. 7分
∵,等號(hào)在時(shí)取得.
此時(shí) 需滿足. 8分
②當(dāng)為奇數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.
∴是隨的增大而增大, ∴時(shí)取得最小值.
此時(shí)需滿足. 9分
∴綜合①、②可得的取值范圍是. 10分
(3),,,
若成等比數(shù)列,則, 11分
即.
由,可得, 12分
即,
∴. 13分
又,且,所以,此時(shí).
因此,當(dāng)且僅當(dāng),時(shí),數(shù)列中的成等比數(shù)列. 14分
考點(diǎn):1.等差數(shù)列的通項(xiàng)公式和求和公式;2.裂項(xiàng)相消法求和;3.等比中項(xiàng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)無(wú)窮等比數(shù)列的公比為q,且,表示不超過(guò)實(shí)數(shù)的最大整數(shù)(如),記,數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為.
(Ⅰ)若,求;
(Ⅱ)證明: ()的充分必要條件為;
(Ⅲ)若對(duì)于任意不超過(guò)的正整數(shù)n,都有,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列中,,設(shè).
(Ⅰ)試寫(xiě)出數(shù)列的前三項(xiàng);
(Ⅱ)求證:數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;
(Ⅲ)設(shè)的前項(xiàng)和為,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等比數(shù)列的首項(xiàng),公比,設(shè)數(shù)列的通項(xiàng)公式,數(shù)列,的前項(xiàng)和分別記為,,試比較與的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
右表是一個(gè)由正數(shù)組成的數(shù)表,數(shù)表中各行依次成等差數(shù)列,各列依次成等比數(shù)列,且公比都相等,已知
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)求數(shù)列的前項(xiàng)和。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列中,,.
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿足,數(shù)列的前項(xiàng)和為,若不等式對(duì)一切恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等比數(shù)列的各項(xiàng)均為正數(shù),,.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè).證明:為等差數(shù)列,并求的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列的前項(xiàng)和為,且.
(Ⅰ)求;(Ⅱ)設(shè),求數(shù)列的通項(xiàng)公式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列滿足: ().
(1)求的值;
(2)求證:數(shù)列是等比數(shù)列;
(3)令,,如果對(duì)任意,都有,
求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com