【題目】已知函數(shù).
(1)求的單調遞增區(qū)間;
(2)求證:曲線在區(qū)間上有且只有一條斜率為2的切線.
【答案】(1),(2)見解析
【解析】
(1)根據函數(shù)解析式,求得導函數(shù),令即可求得的單調遞增區(qū)間;
(2)曲線在區(qū)間上有且只有一條斜率為2的切線,等價于在區(qū)間上方程有唯一解,構造函數(shù),求得導函數(shù),并判斷的符號,確定的單調性與極值,從而判斷出在上存在唯一一個零點,即可證明結論.
(1)函數(shù),,
則,
令得,,
∴單調遞增區(qū)間為,
(2)原命題等價于:在區(qū)間上,方程有唯一解,
設,
則
此時,,,變化情況如下:
0 | |||
極大值 |
此時,在上單調遞增,且,,
在上單調遞減,且,
∴在上存在唯一一個根,
在上存在唯一一個零點,
∴曲線在區(qū)間上有且僅有一條斜率為2的切線.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的短軸長為2,離心率.過橢圓的右焦點作直線l(不與軸重合)與橢圓交于不同的兩點,.
(1)求橢圓的方程;
(2)試問在軸上是否存在定點,使得直線與直線恰好關于軸對稱?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸非負半軸為極軸建立極坐標系,點為曲線上的動點,點在線段的延長線上且滿足點的軌跡為.
(1)求曲線的極坐標方程;
(2)設點的極坐標為,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的極坐標方程和曲線的直角坐標方程;
(2)求曲線與交點的極坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在多面體中,平面平面,∥,,,,.
(1)求多面體的體積;
(2)已知是棱的中點,在棱是否存在點使得∥,若存在,請確定點的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(γ為參數(shù)),曲線的參數(shù)方程為(s為參數(shù)).以坐標原點為極點,x軸的正半軸為極軸建立極坐秘系,已知點A的極坐標為,直線l:()與交于點B,其中.
(1)求曲線的極坐標方程以及曲線的普通方程;
(2)過點A的直線m與交于M,N兩點,若,且,求α的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面四邊形是菱形,點在線段上,∥平面.
(1)證明:點為線段中點;
(2)已知平面,,點到平面的距離為1,四棱錐的體積為,求.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com